Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch ConvBERT model. """ | |
| import os | |
| import tempfile | |
| import unittest | |
| from transformers import ConvBertConfig, is_torch_available | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
| ConvBertForMaskedLM, | |
| ConvBertForMultipleChoice, | |
| ConvBertForQuestionAnswering, | |
| ConvBertForSequenceClassification, | |
| ConvBertForTokenClassification, | |
| ConvBertModel, | |
| ) | |
| from transformers.models.convbert.modeling_convbert import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST | |
| class ConvBertModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = self.get_config() | |
| return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def get_config(self): | |
| return ConvBertConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def prepare_config_and_inputs_for_decoder(self): | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = self.prepare_config_and_inputs() | |
| config.is_decoder = True | |
| encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
| encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
| return ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| def create_and_check_model( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = ConvBertModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| def create_and_check_for_masked_lm( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = ConvBertForMaskedLM(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_for_question_answering( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = ConvBertForQuestionAnswering(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| start_positions=sequence_labels, | |
| end_positions=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def create_and_check_for_sequence_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = ConvBertForSequenceClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_token_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = ConvBertForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def create_and_check_for_multiple_choice( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_choices = self.num_choices | |
| model = ConvBertForMultipleChoice(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| result = model( | |
| multiple_choice_inputs_ids, | |
| attention_mask=multiple_choice_input_mask, | |
| token_type_ids=multiple_choice_token_type_ids, | |
| labels=choice_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class ConvBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| ConvBertModel, | |
| ConvBertForMaskedLM, | |
| ConvBertForMultipleChoice, | |
| ConvBertForQuestionAnswering, | |
| ConvBertForSequenceClassification, | |
| ConvBertForTokenClassification, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": ConvBertModel, | |
| "fill-mask": ConvBertForMaskedLM, | |
| "question-answering": ConvBertForQuestionAnswering, | |
| "text-classification": ConvBertForSequenceClassification, | |
| "token-classification": ConvBertForTokenClassification, | |
| "zero-shot": ConvBertForSequenceClassification, | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| test_pruning = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = ConvBertModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_masked_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
| def test_for_multiple_choice(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ConvBertModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_attention_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| seq_len = getattr(self.model_tester, "seq_length", None) | |
| decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
| encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) | |
| decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) | |
| encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
| chunk_length = getattr(self.model_tester, "chunk_length", None) | |
| if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): | |
| encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| if chunk_length is not None: | |
| self.assertListEqual( | |
| list(attentions[0].shape[-4:]), | |
| [self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length], | |
| ) | |
| else: | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], | |
| ) | |
| out_len = len(outputs) | |
| if self.is_encoder_decoder: | |
| correct_outlen = 5 | |
| # loss is at first position | |
| if "labels" in inputs_dict: | |
| correct_outlen += 1 # loss is added to beginning | |
| # Question Answering model returns start_logits and end_logits | |
| if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): | |
| correct_outlen += 1 # start_logits and end_logits instead of only 1 output | |
| if "past_key_values" in outputs: | |
| correct_outlen += 1 # past_key_values have been returned | |
| self.assertEqual(out_len, correct_outlen) | |
| # decoder attentions | |
| decoder_attentions = outputs.decoder_attentions | |
| self.assertIsInstance(decoder_attentions, (list, tuple)) | |
| self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(decoder_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
| ) | |
| # cross attentions | |
| cross_attentions = outputs.cross_attentions | |
| self.assertIsInstance(cross_attentions, (list, tuple)) | |
| self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(cross_attentions[0].shape[-3:]), | |
| [ | |
| self.model_tester.num_attention_heads, | |
| decoder_seq_length, | |
| encoder_key_length, | |
| ], | |
| ) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| if hasattr(self.model_tester, "num_hidden_states_types"): | |
| added_hidden_states = self.model_tester.num_hidden_states_types | |
| elif self.is_encoder_decoder: | |
| added_hidden_states = 2 | |
| else: | |
| added_hidden_states = 1 | |
| self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
| self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
| if chunk_length is not None: | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-4:]), | |
| [self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length], | |
| ) | |
| else: | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], | |
| ) | |
| def test_torchscript_device_change(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| # ConvBertForMultipleChoice behaves incorrectly in JIT environments. | |
| if model_class == ConvBertForMultipleChoice: | |
| return | |
| config.torchscript = True | |
| model = model_class(config=config) | |
| inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| traced_model = torch.jit.trace( | |
| model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) | |
| ) | |
| with tempfile.TemporaryDirectory() as tmp: | |
| torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt")) | |
| loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device) | |
| loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) | |
| def test_model_for_input_embeds(self): | |
| batch_size = 2 | |
| seq_length = 10 | |
| inputs_embeds = torch.rand([batch_size, seq_length, 768], device=torch_device) | |
| config = self.model_tester.get_config() | |
| model = ConvBertModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(inputs_embeds=inputs_embeds) | |
| self.assertEqual(result.last_hidden_state.shape, (batch_size, seq_length, config.hidden_size)) | |
| def test_reducing_attention_heads(self): | |
| config, *inputs_dict = self.model_tester.prepare_config_and_inputs() | |
| config.head_ratio = 4 | |
| self.model_tester.create_and_check_for_masked_lm(config, *inputs_dict) | |
| class ConvBertModelIntegrationTest(unittest.TestCase): | |
| def test_inference_no_head(self): | |
| model = ConvBertModel.from_pretrained("YituTech/conv-bert-base") | |
| input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]]) | |
| with torch.no_grad(): | |
| output = model(input_ids)[0] | |
| expected_shape = torch.Size((1, 6, 768)) | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]] | |
| ) | |
| self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |