Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from datasets import load_dataset | |
| from transformers import BloomTokenizerFast | |
| from transformers.testing_utils import require_tokenizers | |
| from ...test_tokenization_common import TokenizerTesterMixin | |
| class BloomTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
| slow_tokenizer_class = None | |
| rust_tokenizer_class = BloomTokenizerFast | |
| tokenizer_class = BloomTokenizerFast | |
| test_rust_tokenizer = True | |
| test_slow_tokenizer = False | |
| from_pretrained_vocab_key = "tokenizer_file" | |
| special_tokens_map = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} | |
| def setUp(self): | |
| super().setUp() | |
| tokenizer = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") | |
| tokenizer.save_pretrained(self.tmpdirname) | |
| def get_rust_tokenizer(self, **kwargs): | |
| kwargs.update(self.special_tokens_map) | |
| return BloomTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) | |
| def test_encodings_from_sample_data(self): | |
| """ | |
| Assert that the created tokens are the same than the hard-coded ones | |
| """ | |
| tokenizer = self.get_rust_tokenizer() | |
| INPUT_SENTENCES = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] | |
| TARGET_TOKENS = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] | |
| computed_tokens = tokenizer.batch_encode_plus(INPUT_SENTENCES)["input_ids"] | |
| self.assertListEqual(TARGET_TOKENS, computed_tokens) | |
| decoded_tokens = tokenizer.batch_decode(computed_tokens) | |
| self.assertListEqual(decoded_tokens, INPUT_SENTENCES) | |
| def test_padding(self, max_length=6): | |
| for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
| with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
| tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
| # tokenizer_r.pad_token = None # Hotfixing padding = None | |
| # Simple input | |
| s = "This is a simple input" | |
| s2 = ["This is a simple input 1", "This is a simple input 2"] | |
| p = ("This is a simple input", "This is a pair") | |
| p2 = [ | |
| ("This is a simple input 1", "This is a simple input 2"), | |
| ("This is a simple pair 1", "This is a simple pair 2"), | |
| ] | |
| # Simple input tests | |
| try: | |
| tokenizer_r.encode(s, max_length=max_length) | |
| tokenizer_r.encode_plus(s, max_length=max_length) | |
| tokenizer_r.batch_encode_plus(s2, max_length=max_length) | |
| tokenizer_r.encode(p, max_length=max_length) | |
| tokenizer_r.batch_encode_plus(p2, max_length=max_length) | |
| except ValueError: | |
| self.fail("Bloom Tokenizer should be able to deal with padding") | |
| tokenizer_r.pad_token = None # Hotfixing padding = None | |
| self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") | |
| # Simple input | |
| self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") | |
| # Simple input | |
| self.assertRaises( | |
| ValueError, | |
| tokenizer_r.batch_encode_plus, | |
| s2, | |
| max_length=max_length, | |
| padding="max_length", | |
| ) | |
| # Pair input | |
| self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") | |
| # Pair input | |
| self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") | |
| # Pair input | |
| self.assertRaises( | |
| ValueError, | |
| tokenizer_r.batch_encode_plus, | |
| p2, | |
| max_length=max_length, | |
| padding="max_length", | |
| ) | |
| def test_encodings_from_xnli_dataset(self): | |
| """ | |
| Tests the tokenizer downloaded from here: | |
| - https://huggingface.co/bigscience/tokenizer/ | |
| """ | |
| tokenizer = self.get_rust_tokenizer() | |
| ds = load_dataset("xnli", "all_languages", split="test", streaming=True) | |
| sample_data = next(iter(ds))["premise"] # pick up one data | |
| input_text = list(sample_data.values()) | |
| output_tokens = list(map(tokenizer.encode, input_text)) | |
| predicted_text = [tokenizer.decode(x, clean_up_tokenization_spaces=False) for x in output_tokens] | |
| self.assertListEqual(predicted_text, input_text) | |
| def test_pretrained_model_lists(self): | |
| # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have | |
| # any sequence length constraints. This test of the parent class will fail since it relies on the | |
| # maximum sequence length of the positoonal embeddings. | |
| self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) | |
| self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) | |