Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch BridgeTower model. """ | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| from transformers import BridgeTowerConfig, is_torch_available, is_vision_available | |
| from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
| from transformers.utils import cached_property | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ( | |
| ModelTesterMixin, | |
| _config_zero_init, | |
| floats_tensor, | |
| ids_tensor, | |
| random_attention_mask, | |
| ) | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| BridgeTowerForContrastiveLearning, | |
| BridgeTowerForImageAndTextRetrieval, | |
| BridgeTowerForMaskedLM, | |
| BridgeTowerModel, | |
| ) | |
| from transformers.models.bridgetower.modeling_bridgetower import BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST | |
| from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_10 | |
| else: | |
| is_torch_greater_or_equal_than_1_10 = False | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import BridgeTowerProcessor | |
| class BridgeTowerModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| share_cross_modal_transformer_layers=True, | |
| drop_rate=0.1, | |
| head_hidden_scale=2, | |
| hidden_act="gelu", | |
| hidden_size=768, | |
| initializer_factor=1, | |
| is_encoder_decoder=False, | |
| layer_norm_eps=1e-05, | |
| share_link_tower_layers=False, | |
| link_tower_type="add", | |
| num_attention_heads=12, | |
| num_hidden_layers=6, | |
| tie_word_embeddings=False, | |
| init_layernorm_from_vision_encoder=False, | |
| output_hidden_states=False, | |
| text_config=None, | |
| vision_config=None, | |
| image_size=288, | |
| contrastive_hidden_size=512, | |
| logit_scale_init_value=2.6592, | |
| ): | |
| self.parent = parent | |
| self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers | |
| self.drop_rate = drop_rate | |
| self.head_hidden_scale = head_hidden_scale | |
| self.hidden_act = hidden_act | |
| self.hidden_size = hidden_size | |
| self.initializer_factor = initializer_factor | |
| self.is_encoder_decoder = is_encoder_decoder | |
| self.layer_norm_eps = layer_norm_eps | |
| self.share_link_tower_layers = share_link_tower_layers | |
| self.link_tower_type = link_tower_type | |
| self.num_attention_heads = num_attention_heads | |
| self.num_hidden_layers = num_hidden_layers | |
| self.tie_word_embeddings = tie_word_embeddings | |
| self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder | |
| self.vocab_size = 99 | |
| self.num_channels = 3 | |
| self.seq_length = 4 | |
| self.num_image_features = 325 | |
| self.batch_size = 1 | |
| self.image_size = image_size | |
| self.is_training = False | |
| self.expected_num_hidden_layers = 32 | |
| self.output_hidden_states = output_hidden_states | |
| self.contrastive_hidden_size = contrastive_hidden_size | |
| self.logit_scale_init_value = logit_scale_init_value | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| pixel_mask = random_attention_mask([self.batch_size, self.image_size, self.image_size]) | |
| config = self.get_config() | |
| return (config, input_ids, attention_mask, pixel_values, pixel_mask) | |
| def get_config(self): | |
| return BridgeTowerConfig( | |
| share_cross_modal_transformer_layers=self.share_cross_modal_transformer_layers, | |
| drop_rate=self.drop_rate, | |
| head_hidden_scale=self.head_hidden_scale, | |
| hidden_act=self.hidden_act, | |
| hidden_size=self.hidden_size, | |
| initializer_factor=self.initializer_factor, | |
| image_size=self.image_size, | |
| is_encoder_decoder=self.is_encoder_decoder, | |
| layer_norm_eps=self.layer_norm_eps, | |
| share_link_tower_layers=self.share_link_tower_layers, | |
| link_tower_type=self.link_tower_type, | |
| num_attention_heads=self.num_attention_heads, | |
| num_hidden_layers=self.num_hidden_layers, | |
| tie_word_embeddings=self.tie_word_embeddings, | |
| init_layernorm_from_vision_encoder=self.init_layernorm_from_vision_encoder, | |
| num_channels=self.num_channels, | |
| output_hidden_states=self.output_hidden_states, | |
| contrastive_hidden_size=self.contrastive_hidden_size, | |
| logit_scale_init_value=self.logit_scale_init_value, | |
| ) | |
| def create_and_check_model( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| pixel_values, | |
| pixel_mask, | |
| ): | |
| model = BridgeTowerModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) | |
| result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) | |
| self.parent.assertEqual(result["text_features"].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual( | |
| result["image_features"].shape, (self.batch_size, self.num_image_features, self.hidden_size) | |
| ) | |
| self.parent.assertEqual(result["pooler_output"].shape, (self.batch_size, 2 * self.hidden_size)) | |
| def create_and_check_for_image_and_text_retrieval( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| pixel_values, | |
| pixel_mask, | |
| ): | |
| bridgetower_itm_output_last_dimension = 2 | |
| model = BridgeTowerForImageAndTextRetrieval(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) | |
| result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, bridgetower_itm_output_last_dimension)) | |
| def create_and_check_for_masked_language_modeling( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| pixel_values, | |
| pixel_mask, | |
| ): | |
| model = BridgeTowerForMaskedLM(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) | |
| result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, 50265)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| (config, input_ids, attention_mask, pixel_values, pixel_mask) = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": pixel_values, | |
| "pixel_mask": pixel_mask, | |
| } | |
| return config, inputs_dict | |
| class BridgeTowerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| BridgeTowerModel, | |
| BridgeTowerForImageAndTextRetrieval, | |
| BridgeTowerForMaskedLM, | |
| BridgeTowerForContrastiveLearning, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = {"feature-extraction": BridgeTowerModel} if is_torch_available() else {} | |
| is_training = False | |
| test_headmasking = False | |
| test_pruning = False | |
| test_torchscript = False | |
| test_resize_embeddings = False | |
| has_attentions = False | |
| # function to extract meaningful tensor from output per different model_class | |
| def extract_output(self, outputs, model_class): | |
| return outputs["pooler_output"] if model_class == "BridgeTowerModel" else outputs["logits"] | |
| def setUp(self): | |
| self.model_tester = BridgeTowerModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BridgeTowerConfig, hidden_size=37, vocab_size=99) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_image_and_text_retrieval(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_and_text_retrieval(*config_and_inputs) | |
| def test_for_masked_language_modeling(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_language_modeling(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BridgeTowerModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_save_load_fast_init_from_base(self): | |
| # Override as it is a slow test on this model | |
| super().test_save_load_fast_init_from_base() | |
| # Override as extracting meaningful tensor from output is different for BridgeTower | |
| def test_save_load(self): | |
| config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**input_dict) | |
| out_2 = self.extract_output(outputs, model_class.__name__) | |
| out_2 = out_2.cpu().numpy() | |
| out_2[np.isnan(out_2)] = 0 | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model = model_class.from_pretrained(tmpdirname) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| after_outputs = model(**input_dict) | |
| # Make sure we don't have nans | |
| out_1 = self.extract_output(after_outputs, model_class.__name__) | |
| out_1 = out_1.cpu().numpy() | |
| out_1[np.isnan(out_1)] = 0 | |
| max_diff = np.amax(np.abs(out_1 - out_2)) | |
| self.assertLessEqual(max_diff, 1e-5) | |
| # Override this as `hidden states output` is different for BridgeTower | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states_text, hidden_states_vision, hidden_states_cross = ( | |
| outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
| ) | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
| ) | |
| self.assertEqual( | |
| sum((len(hidden_states_text), len(hidden_states_vision), len(hidden_states_cross))), | |
| expected_num_layers, | |
| ) | |
| seq_length = self.model_tester.seq_length | |
| num_image_features = self.model_tester.num_image_features | |
| self.assertListEqual( | |
| list(hidden_states_text[0].shape[-2:]), | |
| [seq_length, self.model_tester.hidden_size], | |
| ) | |
| self.assertListEqual( | |
| list(hidden_states_vision[0].shape), | |
| [num_image_features, 1, self.model_tester.hidden_size], | |
| ) | |
| self.assertListEqual( | |
| list(hidden_states_cross[0][0].shape[-2:]), | |
| [seq_length, self.model_tester.hidden_size], | |
| ) | |
| self.assertListEqual( | |
| list(hidden_states_cross[0][1].shape[-2:]), | |
| [num_image_features, self.model_tester.hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # Override as `hidden states output` is different for BridgeTower | |
| def test_retain_grad_hidden_states_attentions(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.output_hidden_states = True | |
| config.output_attentions = self.has_attentions | |
| # no need to test all models as different heads yield the same functionality | |
| model_class = self.all_model_classes[0] | |
| model = model_class(config) | |
| model.to(torch_device) | |
| inputs = self._prepare_for_class(inputs_dict, model_class) | |
| outputs = model(**inputs) | |
| output = outputs[0] | |
| # Encoder-/Decoder-only models | |
| hidden_states = outputs.hidden_states[0][0] | |
| hidden_states.retain_grad() | |
| if self.has_attentions: | |
| attentions = outputs.attentions[0][0] | |
| attentions.retain_grad() | |
| output.flatten()[0].backward(retain_graph=True) | |
| self.assertIsNotNone(hidden_states.grad) | |
| if self.has_attentions: | |
| self.assertIsNotNone(attentions.grad) | |
| # override as the `logit_scale` parameter initilization is different for BRIDGE TOWER | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| if name == "logit_scale": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| config.logit_scale_init_value, | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class BridgeTowerModelIntegrationTest(unittest.TestCase): | |
| def default_processor(self): | |
| return ( | |
| BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") | |
| if is_vision_available() | |
| else None | |
| ) | |
| def test_image_and_text_retrieval(self): | |
| model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm").to( | |
| torch_device | |
| ) | |
| model.eval() | |
| processor = self.default_processor | |
| image = prepare_img() | |
| text = "a bunch of cats laying on a tower." | |
| inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = torch.Size([1, 2]) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| self.assertTrue(outputs.logits[0, 1].item() > outputs.logits[0, 0].item()) | |
| # verify loss | |
| inputs["labels"] = torch.ones(1, dtype=torch.long, device=torch_device) | |
| inputs = inputs.to(torch_device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| self.assertAlmostEqual(outputs.loss.item(), 0.5108, places=4) | |
| def test_masked_language_modeling(self): | |
| model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm").to(torch_device) | |
| model.eval() | |
| processor = self.default_processor | |
| image = prepare_img() | |
| text = "a bunch of <mask> laying on a tower." | |
| inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = torch.Size([1, 11, 50265]) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| # verify predicted word | |
| predicted_id = outputs.logits.argmax(dim=-1).squeeze(0).tolist()[4] | |
| self.assertTrue(processor.decode([predicted_id]) == " cats") | |
| # verify loss | |
| inputs["labels"] = inputs["input_ids"].clone() | |
| inputs = inputs.to(torch_device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| self.assertAlmostEqual(outputs.loss.item(), 5.7373, places=4) | |
| def test_constrastive_learning(self): | |
| model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc").to( | |
| torch_device | |
| ) | |
| model.eval() | |
| processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") | |
| image = prepare_img() | |
| text = "a bunch of cats laying on a tower." | |
| inputs = processor(image, text, padding=True, return_tensors="pt").to(torch_device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs, output_hidden_states=True, return_loss=True) | |
| # verify the logits | |
| expected_shape = torch.Size([1, 3, 512]) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| class BridgeTowerModelTrainingTest(unittest.TestCase): | |
| all_training_supported_model_classes = ( | |
| (BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerForContrastiveLearning) | |
| if is_torch_available() | |
| else () | |
| ) | |
| def setUp(self): | |
| self.model_tester = BridgeTowerModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BridgeTowerConfig, hidden_size=37, vocab_size=99) | |
| def _prepare_inputs_for_training(self, model_class): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if model_class == BridgeTowerForMaskedLM: | |
| inputs_dict["labels"] = inputs_dict["input_ids"] | |
| elif model_class == BridgeTowerForImageAndTextRetrieval: | |
| inputs_dict["labels"] = ids_tensor([1], 2) | |
| elif model_class == BridgeTowerForContrastiveLearning: | |
| inputs_dict["return_loss"] = True | |
| return config, inputs_dict | |
| def _get_non_used_layer_names(self, model_class): | |
| non_used_layer_names = ["text_model.pooler"] | |
| if model_class == BridgeTowerForMaskedLM: | |
| non_used_layer_names = non_used_layer_names + [ | |
| "cross_modal_image_layers.5", | |
| "cross_modal_image_pooler", | |
| "cross_modal_text_pooler", | |
| ] | |
| return non_used_layer_names | |
| def _is_layer_used(self, model_class, layer_name): | |
| non_used_layer_names = self._get_non_used_layer_names(model_class) | |
| for non_used_layer_name in non_used_layer_names: | |
| if non_used_layer_name in layer_name: | |
| return False | |
| return True | |
| def test_training(self): | |
| for model_class in self.all_training_supported_model_classes: | |
| config, inputs_dict = self._prepare_inputs_for_training(model_class) | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| loss = model(**inputs_dict).loss | |
| loss.backward() | |
| # verify the gradients of used layers' weight are not None | |
| for name, param in model.named_parameters(): | |
| if self._is_layer_used(model_class, name): | |
| self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}") | |