Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2019 Hugging Face inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| import unittest | |
| from transformers import DebertaTokenizer, DebertaTokenizerFast | |
| from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES | |
| from transformers.testing_utils import slow | |
| from ...test_tokenization_common import TokenizerTesterMixin | |
| class DebertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
| tokenizer_class = DebertaTokenizer | |
| test_rust_tokenizer = True | |
| rust_tokenizer_class = DebertaTokenizerFast | |
| def setUp(self): | |
| super().setUp() | |
| # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
| vocab = [ | |
| "l", | |
| "o", | |
| "w", | |
| "e", | |
| "r", | |
| "s", | |
| "t", | |
| "i", | |
| "d", | |
| "n", | |
| "\u0120", | |
| "\u0120l", | |
| "\u0120n", | |
| "\u0120lo", | |
| "\u0120low", | |
| "er", | |
| "\u0120lowest", | |
| "\u0120newer", | |
| "\u0120wider", | |
| "[UNK]", | |
| ] | |
| vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
| merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] | |
| self.special_tokens_map = {"unk_token": "[UNK]"} | |
| self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
| self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
| with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
| fp.write(json.dumps(vocab_tokens) + "\n") | |
| with open(self.merges_file, "w", encoding="utf-8") as fp: | |
| fp.write("\n".join(merges)) | |
| def get_tokenizer(self, **kwargs): | |
| kwargs.update(self.special_tokens_map) | |
| return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) | |
| def get_input_output_texts(self, tokenizer): | |
| input_text = "lower newer" | |
| output_text = "lower newer" | |
| return input_text, output_text | |
| def test_full_tokenizer(self): | |
| tokenizer = self.get_tokenizer() | |
| text = "lower newer" | |
| bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] | |
| tokens = tokenizer.tokenize(text) | |
| self.assertListEqual(tokens, bpe_tokens) | |
| input_tokens = tokens + [tokenizer.unk_token] | |
| input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] | |
| self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
| def test_token_type_ids(self): | |
| tokenizer = self.get_tokenizer() | |
| tokd = tokenizer("Hello", "World") | |
| expected_token_type_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] | |
| self.assertListEqual(tokd["token_type_ids"], expected_token_type_ids) | |
| def test_sequence_builders(self): | |
| tokenizer = self.tokenizer_class.from_pretrained("microsoft/deberta-base") | |
| text = tokenizer.encode("sequence builders", add_special_tokens=False) | |
| text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) | |
| encoded_text_from_decode = tokenizer.encode( | |
| "sequence builders", add_special_tokens=True, add_prefix_space=False | |
| ) | |
| encoded_pair_from_decode = tokenizer.encode( | |
| "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False | |
| ) | |
| encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
| encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
| assert encoded_sentence == encoded_text_from_decode | |
| assert encoded_pair == encoded_pair_from_decode | |
| def test_tokenizer_integration(self): | |
| tokenizer_classes = [self.tokenizer_class] | |
| if self.test_rust_tokenizer: | |
| tokenizer_classes.append(self.rust_tokenizer_class) | |
| for tokenizer_class in tokenizer_classes: | |
| tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-base") | |
| sequences = [ | |
| "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", | |
| "ALBERT incorporates two parameter reduction techniques", | |
| "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" | |
| " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" | |
| " vocabulary embedding.", | |
| ] | |
| encoding = tokenizer(sequences, padding=True) | |
| decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] | |
| # fmt: off | |
| expected_encoding = { | |
| 'input_ids': [ | |
| [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] | |
| ], | |
| 'token_type_ids': [ | |
| [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
| ], | |
| 'attention_mask': [ | |
| [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] | |
| ] | |
| } | |
| # fmt: on | |
| expected_decoded_sequence = [ | |
| "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", | |
| "ALBERT incorporates two parameter reduction techniques", | |
| "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" | |
| " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" | |
| " vocabulary embedding.", | |
| ] | |
| self.assertDictEqual(encoding.data, expected_encoding) | |
| for expected, decoded in zip(expected_decoded_sequence, decoded_sequences): | |
| self.assertEqual(expected, decoded) | |