Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import sys | |
| from typing import Dict | |
| from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available | |
| from transformers.testing_utils import ( | |
| TestCasePlus, | |
| execute_subprocess_async, | |
| get_torch_dist_unique_port, | |
| require_torch_multi_gpu, | |
| require_torch_neuroncore, | |
| ) | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from torch.utils.data import Dataset | |
| from transformers import Trainer | |
| class DummyDataset(Dataset): | |
| def __init__(self, length: int = 101): | |
| self.length = length | |
| def __len__(self): | |
| return self.length | |
| def __getitem__(self, i) -> int: | |
| return i | |
| class DummyDataCollator: | |
| def __call__(self, features): | |
| return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)} | |
| class DummyModel(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| # Add some (unused) params otherwise DDP will complain. | |
| self.fc = nn.Linear(120, 80) | |
| def forward(self, input_ids, labels=None): | |
| if labels is not None: | |
| return torch.tensor(0.0, device=input_ids.device), input_ids | |
| else: | |
| return input_ids | |
| class TestTrainerDistributedNeuronCore(TestCasePlus): | |
| def test_trainer(self): | |
| distributed_args = f""" | |
| -m torch.distributed.run | |
| --nproc_per_node=2 | |
| --master_port={get_torch_dist_unique_port()} | |
| {self.test_file_dir}/test_trainer_distributed.py | |
| """.split() | |
| output_dir = self.get_auto_remove_tmp_dir() | |
| args = f"--output_dir {output_dir}".split() | |
| cmd = [sys.executable] + distributed_args + args | |
| execute_subprocess_async(cmd, env=self.get_env()) | |
| # successful return here == success - any errors would have caused an error in the sub-call | |
| class TestTrainerDistributed(TestCasePlus): | |
| def test_trainer(self): | |
| distributed_args = f""" | |
| -m torch.distributed.run | |
| --nproc_per_node={torch.cuda.device_count()} | |
| --master_port={get_torch_dist_unique_port()} | |
| {self.test_file_dir}/test_trainer_distributed.py | |
| """.split() | |
| output_dir = self.get_auto_remove_tmp_dir() | |
| args = f"--output_dir {output_dir}".split() | |
| cmd = [sys.executable] + distributed_args + args | |
| execute_subprocess_async(cmd, env=self.get_env()) | |
| # successful return here == success - any errors would have caused an error in the sub-call | |
| if __name__ == "__main__": | |
| # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: | |
| # | |
| # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py | |
| parser = HfArgumentParser((TrainingArguments,)) | |
| training_args = parser.parse_args_into_dataclasses()[0] | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " | |
| f"distributed training: {training_args.local_rank != -1}" | |
| ) | |
| # Essentially, what we want to verify in the distributed case is that we get all samples back, | |
| # in the right order. (this is crucial for prediction for instance) | |
| for dataset_length in [101, 40, 7]: | |
| dataset = DummyDataset(dataset_length) | |
| def compute_metrics(p: EvalPrediction) -> Dict: | |
| sequential = list(range(len(dataset))) | |
| success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential | |
| if not success and training_args.local_rank == 0: | |
| logger.warning( | |
| "Predictions and/or labels do not match expected results:\n - predictions: " | |
| f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" | |
| ) | |
| return {"success": success} | |
| trainer = Trainer( | |
| model=DummyModel(), | |
| args=training_args, | |
| data_collator=DummyDataCollator(), | |
| eval_dataset=dataset, | |
| compute_metrics=compute_metrics, | |
| ) | |
| metrics = trainer.evaluate() | |
| logger.info(metrics) | |
| if metrics["eval_success"] is not True: | |
| logger.error(metrics) | |
| exit(1) | |
| p = trainer.predict(dataset) | |
| logger.info(p.metrics) | |
| if p.metrics["test_success"] is not True: | |
| logger.error(p.metrics) | |
| exit(1) | |
| trainer.args.eval_accumulation_steps = 2 | |
| metrics = trainer.evaluate() | |
| logger.info(metrics) | |
| if metrics["eval_success"] is not True: | |
| logger.error(metrics) | |
| exit(1) | |
| p = trainer.predict(dataset) | |
| logger.info(p.metrics) | |
| if p.metrics["test_success"] is not True: | |
| logger.error(p.metrics) | |
| exit(1) | |
| trainer.args.eval_accumulation_steps = None | |