Spaces:
Runtime error
Runtime error
| // Copyright (C) 2018-2021 Intel Corporation | |
| // SPDX-License-Identifier: Apache-2.0 | |
| /** | |
| * @brief Define names based depends on Unicode path support | |
| */ | |
| constexpr int INPUT_W = 640; | |
| constexpr int INPUT_H = 640; | |
| using namespace mgb; | |
| cv::Mat static_resize(cv::Mat &img) { | |
| float r = std::min(INPUT_W / (img.cols * 1.0), INPUT_H / (img.rows * 1.0)); | |
| int unpad_w = r * img.cols; | |
| int unpad_h = r * img.rows; | |
| cv::Mat re(unpad_h, unpad_w, CV_8UC3); | |
| cv::resize(img, re, re.size()); | |
| cv::Mat out(INPUT_W, INPUT_H, CV_8UC3, cv::Scalar(114, 114, 114)); | |
| re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows))); | |
| return out; | |
| } | |
| void blobFromImage(cv::Mat &img, float *blob_data) { | |
| int channels = 3; | |
| int img_h = img.rows; | |
| int img_w = img.cols; | |
| for (size_t c = 0; c < channels; c++) { | |
| for (size_t h = 0; h < img_h; h++) { | |
| for (size_t w = 0; w < img_w; w++) { | |
| blob_data[c * img_w * img_h + h * img_w + w] = | |
| (float)img.at<cv::Vec3b>(h, w)[c]; | |
| } | |
| } | |
| } | |
| } | |
| struct Object { | |
| cv::Rect_<float> rect; | |
| int label; | |
| float prob; | |
| }; | |
| struct GridAndStride { | |
| int grid0; | |
| int grid1; | |
| int stride; | |
| }; | |
| static void | |
| generate_grids_and_stride(const int target_size, std::vector<int> &strides, | |
| std::vector<GridAndStride> &grid_strides) { | |
| for (auto stride : strides) { | |
| int num_grid = target_size / stride; | |
| for (int g1 = 0; g1 < num_grid; g1++) { | |
| for (int g0 = 0; g0 < num_grid; g0++) { | |
| grid_strides.push_back((GridAndStride){g0, g1, stride}); | |
| } | |
| } | |
| } | |
| } | |
| static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, | |
| const float *feat_ptr, | |
| float prob_threshold, | |
| std::vector<Object> &objects) { | |
| const int num_class = 80; | |
| const int num_anchors = grid_strides.size(); | |
| for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) { | |
| const int grid0 = grid_strides[anchor_idx].grid0; | |
| const int grid1 = grid_strides[anchor_idx].grid1; | |
| const int stride = grid_strides[anchor_idx].stride; | |
| const int basic_pos = anchor_idx * 85; | |
| float x_center = (feat_ptr[basic_pos + 0] + grid0) * stride; | |
| float y_center = (feat_ptr[basic_pos + 1] + grid1) * stride; | |
| float w = exp(feat_ptr[basic_pos + 2]) * stride; | |
| float h = exp(feat_ptr[basic_pos + 3]) * stride; | |
| float x0 = x_center - w * 0.5f; | |
| float y0 = y_center - h * 0.5f; | |
| float box_objectness = feat_ptr[basic_pos + 4]; | |
| for (int class_idx = 0; class_idx < num_class; class_idx++) { | |
| float box_cls_score = feat_ptr[basic_pos + 5 + class_idx]; | |
| float box_prob = box_objectness * box_cls_score; | |
| if (box_prob > prob_threshold) { | |
| Object obj; | |
| obj.rect.x = x0; | |
| obj.rect.y = y0; | |
| obj.rect.width = w; | |
| obj.rect.height = h; | |
| obj.label = class_idx; | |
| obj.prob = box_prob; | |
| objects.push_back(obj); | |
| } | |
| } // class loop | |
| } // point anchor loop | |
| } | |
| static inline float intersection_area(const Object &a, const Object &b) { | |
| cv::Rect_<float> inter = a.rect & b.rect; | |
| return inter.area(); | |
| } | |
| static void qsort_descent_inplace(std::vector<Object> &faceobjects, int left, | |
| int right) { | |
| int i = left; | |
| int j = right; | |
| float p = faceobjects[(left + right) / 2].prob; | |
| while (i <= j) { | |
| while (faceobjects[i].prob > p) | |
| i++; | |
| while (faceobjects[j].prob < p) | |
| j--; | |
| if (i <= j) { | |
| // swap | |
| std::swap(faceobjects[i], faceobjects[j]); | |
| i++; | |
| j--; | |
| } | |
| } | |
| { | |
| { | |
| if (left < j) | |
| qsort_descent_inplace(faceobjects, left, j); | |
| } | |
| { | |
| if (i < right) | |
| qsort_descent_inplace(faceobjects, i, right); | |
| } | |
| } | |
| } | |
| static void qsort_descent_inplace(std::vector<Object> &objects) { | |
| if (objects.empty()) | |
| return; | |
| qsort_descent_inplace(objects, 0, objects.size() - 1); | |
| } | |
| static void nms_sorted_bboxes(const std::vector<Object> &faceobjects, | |
| std::vector<int> &picked, float nms_threshold) { | |
| picked.clear(); | |
| const int n = faceobjects.size(); | |
| std::vector<float> areas(n); | |
| for (int i = 0; i < n; i++) { | |
| areas[i] = faceobjects[i].rect.area(); | |
| } | |
| for (int i = 0; i < n; i++) { | |
| const Object &a = faceobjects[i]; | |
| int keep = 1; | |
| for (int j = 0; j < (int)picked.size(); j++) { | |
| const Object &b = faceobjects[picked[j]]; | |
| // intersection over union | |
| float inter_area = intersection_area(a, b); | |
| float union_area = areas[i] + areas[picked[j]] - inter_area; | |
| // float IoU = inter_area / union_area | |
| if (inter_area / union_area > nms_threshold) | |
| keep = 0; | |
| } | |
| if (keep) | |
| picked.push_back(i); | |
| } | |
| } | |
| static void decode_outputs(const float *prob, std::vector<Object> &objects, | |
| float scale, const int img_w, const int img_h) { | |
| std::vector<Object> proposals; | |
| std::vector<int> strides = {8, 16, 32}; | |
| std::vector<GridAndStride> grid_strides; | |
| generate_grids_and_stride(INPUT_W, strides, grid_strides); | |
| generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); | |
| qsort_descent_inplace(proposals); | |
| std::vector<int> picked; | |
| nms_sorted_bboxes(proposals, picked, NMS_THRESH); | |
| int count = picked.size(); | |
| objects.resize(count); | |
| for (int i = 0; i < count; i++) { | |
| objects[i] = proposals[picked[i]]; | |
| // adjust offset to original unpadded | |
| float x0 = (objects[i].rect.x) / scale; | |
| float y0 = (objects[i].rect.y) / scale; | |
| float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
| float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
| // clip | |
| x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
| y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
| x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
| y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
| objects[i].rect.x = x0; | |
| objects[i].rect.y = y0; | |
| objects[i].rect.width = x1 - x0; | |
| objects[i].rect.height = y1 - y0; | |
| } | |
| } | |
| const float color_list[80][3] = { | |
| {0.000, 0.447, 0.741}, {0.850, 0.325, 0.098}, {0.929, 0.694, 0.125}, | |
| {0.494, 0.184, 0.556}, {0.466, 0.674, 0.188}, {0.301, 0.745, 0.933}, | |
| {0.635, 0.078, 0.184}, {0.300, 0.300, 0.300}, {0.600, 0.600, 0.600}, | |
| {1.000, 0.000, 0.000}, {1.000, 0.500, 0.000}, {0.749, 0.749, 0.000}, | |
| {0.000, 1.000, 0.000}, {0.000, 0.000, 1.000}, {0.667, 0.000, 1.000}, | |
| {0.333, 0.333, 0.000}, {0.333, 0.667, 0.000}, {0.333, 1.000, 0.000}, | |
| {0.667, 0.333, 0.000}, {0.667, 0.667, 0.000}, {0.667, 1.000, 0.000}, | |
| {1.000, 0.333, 0.000}, {1.000, 0.667, 0.000}, {1.000, 1.000, 0.000}, | |
| {0.000, 0.333, 0.500}, {0.000, 0.667, 0.500}, {0.000, 1.000, 0.500}, | |
| {0.333, 0.000, 0.500}, {0.333, 0.333, 0.500}, {0.333, 0.667, 0.500}, | |
| {0.333, 1.000, 0.500}, {0.667, 0.000, 0.500}, {0.667, 0.333, 0.500}, | |
| {0.667, 0.667, 0.500}, {0.667, 1.000, 0.500}, {1.000, 0.000, 0.500}, | |
| {1.000, 0.333, 0.500}, {1.000, 0.667, 0.500}, {1.000, 1.000, 0.500}, | |
| {0.000, 0.333, 1.000}, {0.000, 0.667, 1.000}, {0.000, 1.000, 1.000}, | |
| {0.333, 0.000, 1.000}, {0.333, 0.333, 1.000}, {0.333, 0.667, 1.000}, | |
| {0.333, 1.000, 1.000}, {0.667, 0.000, 1.000}, {0.667, 0.333, 1.000}, | |
| {0.667, 0.667, 1.000}, {0.667, 1.000, 1.000}, {1.000, 0.000, 1.000}, | |
| {1.000, 0.333, 1.000}, {1.000, 0.667, 1.000}, {0.333, 0.000, 0.000}, | |
| {0.500, 0.000, 0.000}, {0.667, 0.000, 0.000}, {0.833, 0.000, 0.000}, | |
| {1.000, 0.000, 0.000}, {0.000, 0.167, 0.000}, {0.000, 0.333, 0.000}, | |
| {0.000, 0.500, 0.000}, {0.000, 0.667, 0.000}, {0.000, 0.833, 0.000}, | |
| {0.000, 1.000, 0.000}, {0.000, 0.000, 0.167}, {0.000, 0.000, 0.333}, | |
| {0.000, 0.000, 0.500}, {0.000, 0.000, 0.667}, {0.000, 0.000, 0.833}, | |
| {0.000, 0.000, 1.000}, {0.000, 0.000, 0.000}, {0.143, 0.143, 0.143}, | |
| {0.286, 0.286, 0.286}, {0.429, 0.429, 0.429}, {0.571, 0.571, 0.571}, | |
| {0.714, 0.714, 0.714}, {0.857, 0.857, 0.857}, {0.000, 0.447, 0.741}, | |
| {0.314, 0.717, 0.741}, {0.50, 0.5, 0}}; | |
| static void draw_objects(const cv::Mat &bgr, | |
| const std::vector<Object> &objects) { | |
| static const char *class_names[] = { | |
| "person", "bicycle", "car", | |
| "motorcycle", "airplane", "bus", | |
| "train", "truck", "boat", | |
| "traffic light", "fire hydrant", "stop sign", | |
| "parking meter", "bench", "bird", | |
| "cat", "dog", "horse", | |
| "sheep", "cow", "elephant", | |
| "bear", "zebra", "giraffe", | |
| "backpack", "umbrella", "handbag", | |
| "tie", "suitcase", "frisbee", | |
| "skis", "snowboard", "sports ball", | |
| "kite", "baseball bat", "baseball glove", | |
| "skateboard", "surfboard", "tennis racket", | |
| "bottle", "wine glass", "cup", | |
| "fork", "knife", "spoon", | |
| "bowl", "banana", "apple", | |
| "sandwich", "orange", "broccoli", | |
| "carrot", "hot dog", "pizza", | |
| "donut", "cake", "chair", | |
| "couch", "potted plant", "bed", | |
| "dining table", "toilet", "tv", | |
| "laptop", "mouse", "remote", | |
| "keyboard", "cell phone", "microwave", | |
| "oven", "toaster", "sink", | |
| "refrigerator", "book", "clock", | |
| "vase", "scissors", "teddy bear", | |
| "hair drier", "toothbrush"}; | |
| cv::Mat image = bgr.clone(); | |
| for (size_t i = 0; i < objects.size(); i++) { | |
| const Object &obj = objects[i]; | |
| fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, | |
| obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); | |
| cv::Scalar color = | |
| cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], | |
| color_list[obj.label][2]); | |
| float c_mean = cv::mean(color)[0]; | |
| cv::Scalar txt_color; | |
| if (c_mean > 0.5) { | |
| txt_color = cv::Scalar(0, 0, 0); | |
| } else { | |
| txt_color = cv::Scalar(255, 255, 255); | |
| } | |
| cv::rectangle(image, obj.rect, color * 255, 2); | |
| char text[256]; | |
| sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); | |
| int baseLine = 0; | |
| cv::Size label_size = | |
| cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); | |
| cv::Scalar txt_bk_color = color * 0.7 * 255; | |
| int x = obj.rect.x; | |
| int y = obj.rect.y + 1; | |
| // int y = obj.rect.y - label_size.height - baseLine; | |
| if (y > image.rows) | |
| y = image.rows; | |
| // if (x + label_size.width > image.cols) | |
| // x = image.cols - label_size.width; | |
| cv::rectangle( | |
| image, | |
| cv::Rect(cv::Point(x, y), | |
| cv::Size(label_size.width, label_size.height + baseLine)), | |
| txt_bk_color, -1); | |
| cv::putText(image, text, cv::Point(x, y + label_size.height), | |
| cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1); | |
| } | |
| cv::imwrite("out.jpg", image); | |
| std::cout << "save output to out.jpg" << std::endl; | |
| } | |
| cg::ComputingGraph::OutputSpecItem make_callback_copy(SymbolVar dev, | |
| HostTensorND &host) { | |
| auto cb = [&host](DeviceTensorND &d) { host.copy_from(d); }; | |
| return {dev, cb}; | |
| } | |
| int main(int argc, char *argv[]) { | |
| serialization::GraphLoader::LoadConfig load_config; | |
| load_config.comp_graph = ComputingGraph::make(); | |
| auto &&graph_opt = load_config.comp_graph->options(); | |
| graph_opt.graph_opt_level = 0; | |
| if (argc != 9) { | |
| std::cout << "Usage : " << argv[0] | |
| << " <path_to_model> <path_to_image> <device> <warmup_count> " | |
| "<thread_number> <use_fast_run> <use_weight_preprocess> " | |
| "<run_with_fp16>" | |
| << std::endl; | |
| return EXIT_FAILURE; | |
| } | |
| const std::string input_model{argv[1]}; | |
| const std::string input_image_path{argv[2]}; | |
| const std::string device{argv[3]}; | |
| const size_t warmup_count = atoi(argv[4]); | |
| const size_t thread_number = atoi(argv[5]); | |
| const size_t use_fast_run = atoi(argv[6]); | |
| const size_t use_weight_preprocess = atoi(argv[7]); | |
| const size_t run_with_fp16 = atoi(argv[8]); | |
| if (device == "cuda") { | |
| load_config.comp_node_mapper = [](CompNode::Locator &loc) { | |
| loc.type = CompNode::DeviceType::CUDA; | |
| }; | |
| } else if (device == "cpu") { | |
| load_config.comp_node_mapper = [](CompNode::Locator &loc) { | |
| loc.type = CompNode::DeviceType::CPU; | |
| }; | |
| } else if (device == "multithread") { | |
| load_config.comp_node_mapper = [thread_number](CompNode::Locator &loc) { | |
| loc.type = CompNode::DeviceType::MULTITHREAD; | |
| loc.device = 0; | |
| loc.stream = thread_number; | |
| }; | |
| std::cout << "use " << thread_number << " thread" << std::endl; | |
| } else { | |
| std::cout << "device only support cuda or cpu or multithread" << std::endl; | |
| return EXIT_FAILURE; | |
| } | |
| if (use_weight_preprocess) { | |
| std::cout << "use weight preprocess" << std::endl; | |
| graph_opt.graph_opt.enable_weight_preprocess(); | |
| } | |
| if (run_with_fp16) { | |
| std::cout << "run with fp16" << std::endl; | |
| graph_opt.graph_opt.enable_f16_io_comp(); | |
| } | |
| if (device == "cuda") { | |
| std::cout << "choose format for cuda" << std::endl; | |
| } else { | |
| std::cout << "choose format for non-cuda" << std::endl; | |
| if (run_with_fp16) { | |
| std::cout << "use chw format when enable fp16" << std::endl; | |
| } else { | |
| std::cout << "choose format for nchw44 for aarch64" << std::endl; | |
| graph_opt.graph_opt.enable_nchw44(); | |
| } | |
| // graph_opt.graph_opt.enable_nchw88(); | |
| } | |
| std::unique_ptr<serialization::InputFile> inp_file = | |
| serialization::InputFile::make_fs(input_model.c_str()); | |
| auto loader = serialization::GraphLoader::make(std::move(inp_file)); | |
| serialization::GraphLoader::LoadResult network = | |
| loader->load(load_config, false); | |
| if (use_fast_run) { | |
| std::cout << "use fastrun" << std::endl; | |
| using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy; | |
| S strategy = static_cast<S>(0); | |
| strategy = S::PROFILE | S::OPTIMIZED | strategy; | |
| mgb::gopt::modify_opr_algo_strategy_inplace(network.output_var_list, | |
| strategy); | |
| } | |
| auto data = network.tensor_map["data"]; | |
| cv::Mat image = cv::imread(input_image_path); | |
| cv::Mat pr_img = static_resize(image); | |
| float *data_ptr = data->resize({1, 3, 640, 640}).ptr<float>(); | |
| blobFromImage(pr_img, data_ptr); | |
| HostTensorND predict; | |
| std::unique_ptr<cg::AsyncExecutable> func = network.graph->compile( | |
| {make_callback_copy(network.output_var_map.begin()->second, predict)}); | |
| for (auto i = 0; i < warmup_count; i++) { | |
| std::cout << "warmup: " << i << std::endl; | |
| func->execute(); | |
| func->wait(); | |
| } | |
| auto start = std::chrono::system_clock::now(); | |
| func->execute(); | |
| func->wait(); | |
| auto end = std::chrono::system_clock::now(); | |
| std::chrono::duration<double> exec_seconds = end - start; | |
| std::cout << "elapsed time: " << exec_seconds.count() << "s" << std::endl; | |
| float *predict_ptr = predict.ptr<float>(); | |
| int img_w = image.cols; | |
| int img_h = image.rows; | |
| float scale = | |
| std::min(INPUT_W / (image.cols * 1.0), INPUT_H / (image.rows * 1.0)); | |
| std::vector<Object> objects; | |
| decode_outputs(predict_ptr, objects, scale, img_w, img_h); | |
| draw_objects(image, objects); | |
| return EXIT_SUCCESS; | |
| } | |