Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # Copyright (c) Megvii, Inc. and its affiliates. | |
| import argparse | |
| import os | |
| import cv2 | |
| import numpy as np | |
| import onnxruntime | |
| from yolox.data.data_augment import preproc as preprocess | |
| from yolox.data.datasets import COCO_CLASSES | |
| from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis | |
| def make_parser(): | |
| parser = argparse.ArgumentParser("onnxruntime inference sample") | |
| parser.add_argument( | |
| "-m", | |
| "--model", | |
| type=str, | |
| default="yolox.onnx", | |
| help="Input your onnx model.", | |
| ) | |
| parser.add_argument( | |
| "-i", | |
| "--image_path", | |
| type=str, | |
| default='test_image.png', | |
| help="Path to your input image.", | |
| ) | |
| parser.add_argument( | |
| "-o", | |
| "--output_dir", | |
| type=str, | |
| default='demo_output', | |
| help="Path to your output directory.", | |
| ) | |
| parser.add_argument( | |
| "-s", | |
| "--score_thr", | |
| type=float, | |
| default=0.3, | |
| help="Score threshould to filter the result.", | |
| ) | |
| parser.add_argument( | |
| "--input_shape", | |
| type=str, | |
| default="640,640", | |
| help="Specify an input shape for inference.", | |
| ) | |
| return parser | |
| if __name__ == '__main__': | |
| args = make_parser().parse_args() | |
| input_shape = tuple(map(int, args.input_shape.split(','))) | |
| origin_img = cv2.imread(args.image_path) | |
| img, ratio = preprocess(origin_img, input_shape) | |
| session = onnxruntime.InferenceSession(args.model) | |
| ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} | |
| output = session.run(None, ort_inputs) | |
| predictions = demo_postprocess(output[0], input_shape)[0] | |
| boxes = predictions[:, :4] | |
| scores = predictions[:, 4:5] * predictions[:, 5:] | |
| boxes_xyxy = np.ones_like(boxes) | |
| boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. | |
| boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. | |
| boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. | |
| boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. | |
| boxes_xyxy /= ratio | |
| dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) | |
| if dets is not None: | |
| final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] | |
| origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds, | |
| conf=args.score_thr, class_names=COCO_CLASSES) | |
| mkdir(args.output_dir) | |
| output_path = os.path.join(args.output_dir, os.path.basename(args.image_path)) | |
| cv2.imwrite(output_path, origin_img) | |