Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch CLAP model. """ | |
| import inspect | |
| import os | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| from datasets import load_dataset | |
| from transformers import ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig | |
| from transformers.testing_utils import require_torch, slow, torch_device | |
| from transformers.utils import is_torch_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ( | |
| ModelTesterMixin, | |
| _config_zero_init, | |
| floats_tensor, | |
| ids_tensor, | |
| random_attention_mask, | |
| ) | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from transformers import ( | |
| ClapAudioModel, | |
| ClapAudioModelWithProjection, | |
| ClapModel, | |
| ClapTextModel, | |
| ClapTextModelWithProjection, | |
| ) | |
| from transformers.models.clap.modeling_clap import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST | |
| class ClapAudioModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| image_size=60, | |
| num_mel_bins=16, | |
| window_size=4, | |
| spec_size=64, | |
| patch_size=2, | |
| patch_stride=2, | |
| seq_length=16, | |
| freq_ratio=2, | |
| num_channels=3, | |
| is_training=True, | |
| hidden_size=256, | |
| patch_embeds_hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=4, | |
| num_heads=[2, 2, 2, 2], | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| initializer_range=0.02, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.num_mel_bins = num_mel_bins | |
| self.window_size = window_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.is_training = is_training | |
| self.hidden_size = hidden_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_heads = num_heads | |
| self.num_attention_heads = num_heads[0] | |
| self.seq_length = seq_length | |
| self.spec_size = spec_size | |
| self.freq_ratio = freq_ratio | |
| self.patch_stride = patch_stride | |
| self.patch_embeds_hidden_size = patch_embeds_hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_features = floats_tensor([self.batch_size, 1, self.hidden_size, self.num_mel_bins]) | |
| config = self.get_config() | |
| return config, input_features | |
| def get_config(self): | |
| return ClapAudioConfig( | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_mel_bins=self.num_mel_bins, | |
| window_size=self.window_size, | |
| num_channels=self.num_channels, | |
| hidden_size=self.hidden_size, | |
| patch_stride=self.patch_stride, | |
| projection_dim=self.projection_dim, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| initializer_range=self.initializer_range, | |
| spec_size=self.spec_size, | |
| freq_ratio=self.freq_ratio, | |
| patch_embeds_hidden_size=self.patch_embeds_hidden_size, | |
| ) | |
| def create_and_check_model(self, config, input_features): | |
| model = ClapAudioModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_features) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_model_with_projection(self, config, input_features): | |
| model = ClapAudioModelWithProjection(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_features) | |
| self.parent.assertEqual(result.audio_embeds.shape, (self.batch_size, self.projection_dim)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_features = config_and_inputs | |
| inputs_dict = {"input_features": input_features} | |
| return config, inputs_dict | |
| class ClapAudioModelTest(ModelTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as CLAP does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = (ClapAudioModel, ClapAudioModelWithProjection) if is_torch_available() else () | |
| fx_compatible = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = ClapAudioModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=ClapAudioConfig, has_text_modality=False, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.hidden_states | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
| ) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [self.model_tester.patch_embeds_hidden_size, self.model_tester.patch_embeds_hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["input_features"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_with_projection(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model_with_projection(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ClapAudioModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_model_with_projection_from_pretrained(self): | |
| for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ClapAudioModelWithProjection.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| self.assertTrue(hasattr(model, "audio_projection")) | |
| class ClapTextModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| max_position_embeddings=512, | |
| initializer_range=0.02, | |
| scope=None, | |
| projection_hidden_act="relu", | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.max_position_embeddings = max_position_embeddings | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| self.projection_hidden_act = projection_hidden_act | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| if input_mask is not None: | |
| batch_size, seq_length = input_mask.shape | |
| rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
| for batch_idx, start_index in enumerate(rnd_start_indices): | |
| input_mask[batch_idx, :start_index] = 1 | |
| input_mask[batch_idx, start_index:] = 0 | |
| config = self.get_config() | |
| return config, input_ids, input_mask | |
| def get_config(self): | |
| return ClapTextConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| projection_dim=self.projection_dim, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| max_position_embeddings=self.max_position_embeddings, | |
| initializer_range=self.initializer_range, | |
| projection_hidden_act=self.projection_hidden_act, | |
| ) | |
| def create_and_check_model(self, config, input_ids, input_mask): | |
| model = ClapTextModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_model_with_projection(self, config, input_ids, input_mask): | |
| model = ClapTextModelWithProjection(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, input_mask = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class ClapTextModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (ClapTextModel, ClapTextModelWithProjection) if is_torch_available() else () | |
| fx_compatible = False | |
| test_pruning = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = ClapTextModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=ClapTextConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_with_projection(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model_with_projection(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ClapTextModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_model_with_projection_from_pretrained(self): | |
| for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ClapTextModelWithProjection.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| self.assertTrue(hasattr(model, "text_projection")) | |
| class ClapModelTester: | |
| def __init__(self, parent, text_kwargs=None, audio_kwargs=None, is_training=True): | |
| if text_kwargs is None: | |
| text_kwargs = {} | |
| if audio_kwargs is None: | |
| audio_kwargs = {} | |
| self.parent = parent | |
| self.text_model_tester = ClapTextModelTester(parent, **text_kwargs) | |
| self.audio_model_tester = ClapAudioModelTester(parent, **audio_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| _, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
| _, input_features = self.audio_model_tester.prepare_config_and_inputs() | |
| config = self.get_config() | |
| return config, input_ids, attention_mask, input_features | |
| def get_config(self): | |
| return ClapConfig.from_text_audio_configs( | |
| self.text_model_tester.get_config(), self.audio_model_tester.get_config(), projection_dim=64 | |
| ) | |
| def create_and_check_model(self, config, input_ids, attention_mask, input_features): | |
| model = ClapModel(config).to(torch_device).eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, input_features, attention_mask) | |
| self.parent.assertEqual( | |
| result.logits_per_audio.shape, (self.audio_model_tester.batch_size, self.text_model_tester.batch_size) | |
| ) | |
| self.parent.assertEqual( | |
| result.logits_per_text.shape, (self.text_model_tester.batch_size, self.audio_model_tester.batch_size) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, attention_mask, input_features = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "input_features": input_features, | |
| "return_loss": True, | |
| } | |
| return config, inputs_dict | |
| class ClapModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (ClapModel,) if is_torch_available() else () | |
| pipeline_model_mapping = {"feature-extraction": ClapModel} if is_torch_available() else {} | |
| fx_compatible = False | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_attention_outputs = False | |
| def setUp(self): | |
| self.model_tester = ClapModelTester(self) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| # override as the `logit_scale` parameter initilization is different for CLAP | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| # check if `logit_scale` is initilized as per the original implementation | |
| if name == "logit_scale": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| np.log(1 / 0.07), | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| try: | |
| input_ids = inputs_dict["input_ids"] | |
| input_features = inputs_dict["input_features"] # CLAP needs input_features | |
| traced_model = torch.jit.trace(model, (input_ids, input_features)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_load_audio_text_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # Save ClapConfig and check if we can load ClapAudioConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| audio_config = ClapAudioConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.audio_config.to_dict(), audio_config.to_dict()) | |
| # Save ClapConfig and check if we can load ClapTextConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| text_config = ClapTextConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
| def test_model_from_pretrained(self): | |
| for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ClapModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class ClapModelIntegrationTest(unittest.TestCase): | |
| paddings = ["repeatpad", "repeat", "pad"] | |
| def test_integration_unfused(self): | |
| EXPECTED_MEANS_UNFUSED = { | |
| "repeatpad": 0.0024, | |
| "pad": 0.0020, | |
| "repeat": 0.0023, | |
| } | |
| librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| audio_sample = librispeech_dummy[-1] | |
| model_id = "laion/clap-htsat-unfused" | |
| model = ClapModel.from_pretrained(model_id).to(torch_device) | |
| processor = ClapProcessor.from_pretrained(model_id) | |
| for padding in self.paddings: | |
| inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding).to( | |
| torch_device | |
| ) | |
| audio_embed = model.get_audio_features(**inputs) | |
| expected_mean = EXPECTED_MEANS_UNFUSED[padding] | |
| self.assertTrue( | |
| torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
| ) | |
| def test_integration_fused(self): | |
| EXPECTED_MEANS_FUSED = { | |
| "repeatpad": 0.00069, | |
| "repeat": 0.00196, | |
| "pad": -0.000379, | |
| } | |
| librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| audio_sample = librispeech_dummy[-1] | |
| model_id = "laion/clap-htsat-fused" | |
| model = ClapModel.from_pretrained(model_id).to(torch_device) | |
| processor = ClapProcessor.from_pretrained(model_id) | |
| for padding in self.paddings: | |
| inputs = processor( | |
| audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding, truncation="fusion" | |
| ).to(torch_device) | |
| audio_embed = model.get_audio_features(**inputs) | |
| expected_mean = EXPECTED_MEANS_FUSED[padding] | |
| self.assertTrue( | |
| torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
| ) | |
| def test_batched_fused(self): | |
| EXPECTED_MEANS_FUSED = { | |
| "repeatpad": 0.0010, | |
| "repeat": 0.0020, | |
| "pad": 0.0006, | |
| } | |
| librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] | |
| model_id = "laion/clap-htsat-fused" | |
| model = ClapModel.from_pretrained(model_id).to(torch_device) | |
| processor = ClapProcessor.from_pretrained(model_id) | |
| for padding in self.paddings: | |
| inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding, truncation="fusion").to( | |
| torch_device | |
| ) | |
| audio_embed = model.get_audio_features(**inputs) | |
| expected_mean = EXPECTED_MEANS_FUSED[padding] | |
| self.assertTrue( | |
| torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
| ) | |
| def test_batched_unfused(self): | |
| EXPECTED_MEANS_FUSED = { | |
| "repeatpad": 0.0016, | |
| "repeat": 0.0019, | |
| "pad": 0.0019, | |
| } | |
| librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
| audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] | |
| model_id = "laion/clap-htsat-unfused" | |
| model = ClapModel.from_pretrained(model_id).to(torch_device) | |
| processor = ClapProcessor.from_pretrained(model_id) | |
| for padding in self.paddings: | |
| inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding).to(torch_device) | |
| audio_embed = model.get_audio_features(**inputs) | |
| expected_mean = EXPECTED_MEANS_FUSED[padding] | |
| self.assertTrue( | |
| torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
| ) | |