Spaces:
Runtime error
Runtime error
| // This file is wirtten base on the following file: | |
| // https://github.com/Tencent/ncnn/blob/master/examples/yolov5.cpp | |
| // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. | |
| // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | |
| // in compliance with the License. You may obtain a copy of the License at | |
| // | |
| // https://opensource.org/licenses/BSD-3-Clause | |
| // | |
| // Unless required by applicable law or agreed to in writing, software distributed | |
| // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | |
| // CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| // specific language governing permissions and limitations under the License. | |
| // ------------------------------------------------------------------------------ | |
| // Copyright (C) 2020-2021, Megvii Inc. All rights reserved. | |
| // YOLOX use the same focus in yolov5 | |
| class YoloV5Focus : public ncnn::Layer | |
| { | |
| public: | |
| YoloV5Focus() | |
| { | |
| one_blob_only = true; | |
| } | |
| virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const | |
| { | |
| int w = bottom_blob.w; | |
| int h = bottom_blob.h; | |
| int channels = bottom_blob.c; | |
| int outw = w / 2; | |
| int outh = h / 2; | |
| int outc = channels * 4; | |
| top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator); | |
| if (top_blob.empty()) | |
| return -100; | |
| for (int p = 0; p < outc; p++) | |
| { | |
| const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2); | |
| float* outptr = top_blob.channel(p); | |
| for (int i = 0; i < outh; i++) | |
| { | |
| for (int j = 0; j < outw; j++) | |
| { | |
| *outptr = *ptr; | |
| outptr += 1; | |
| ptr += 2; | |
| } | |
| ptr += w; | |
| } | |
| } | |
| return 0; | |
| } | |
| }; | |
| DEFINE_LAYER_CREATOR(YoloV5Focus) | |
| struct Object | |
| { | |
| cv::Rect_<float> rect; | |
| int label; | |
| float prob; | |
| }; | |
| struct GridAndStride | |
| { | |
| int grid0; | |
| int grid1; | |
| int stride; | |
| }; | |
| static inline float intersection_area(const Object& a, const Object& b) | |
| { | |
| cv::Rect_<float> inter = a.rect & b.rect; | |
| return inter.area(); | |
| } | |
| static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) | |
| { | |
| int i = left; | |
| int j = right; | |
| float p = faceobjects[(left + right) / 2].prob; | |
| while (i <= j) | |
| { | |
| while (faceobjects[i].prob > p) | |
| i++; | |
| while (faceobjects[j].prob < p) | |
| j--; | |
| if (i <= j) | |
| { | |
| // swap | |
| std::swap(faceobjects[i], faceobjects[j]); | |
| i++; | |
| j--; | |
| } | |
| } | |
| { | |
| { | |
| if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
| } | |
| { | |
| if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
| } | |
| } | |
| } | |
| static void qsort_descent_inplace(std::vector<Object>& objects) | |
| { | |
| if (objects.empty()) | |
| return; | |
| qsort_descent_inplace(objects, 0, objects.size() - 1); | |
| } | |
| static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold) | |
| { | |
| picked.clear(); | |
| const int n = faceobjects.size(); | |
| std::vector<float> areas(n); | |
| for (int i = 0; i < n; i++) | |
| { | |
| areas[i] = faceobjects[i].rect.area(); | |
| } | |
| for (int i = 0; i < n; i++) | |
| { | |
| const Object& a = faceobjects[i]; | |
| int keep = 1; | |
| for (int j = 0; j < (int)picked.size(); j++) | |
| { | |
| const Object& b = faceobjects[picked[j]]; | |
| // intersection over union | |
| float inter_area = intersection_area(a, b); | |
| float union_area = areas[i] + areas[picked[j]] - inter_area; | |
| // float IoU = inter_area / union_area | |
| if (inter_area / union_area > nms_threshold) | |
| keep = 0; | |
| } | |
| if (keep) | |
| picked.push_back(i); | |
| } | |
| } | |
| static void generate_grids_and_stride(const int target_size, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides) | |
| { | |
| for (int i = 0; i < (int)strides.size(); i++) | |
| { | |
| int stride = strides[i]; | |
| int num_grid = target_size / stride; | |
| for (int g1 = 0; g1 < num_grid; g1++) | |
| { | |
| for (int g0 = 0; g0 < num_grid; g0++) | |
| { | |
| GridAndStride gs; | |
| gs.grid0 = g0; | |
| gs.grid1 = g1; | |
| gs.stride = stride; | |
| grid_strides.push_back(gs); | |
| } | |
| } | |
| } | |
| } | |
| static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects) | |
| { | |
| const int num_grid = feat_blob.h; | |
| const int num_class = feat_blob.w - 5; | |
| const int num_anchors = grid_strides.size(); | |
| const float* feat_ptr = feat_blob.channel(0); | |
| for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) | |
| { | |
| const int grid0 = grid_strides[anchor_idx].grid0; | |
| const int grid1 = grid_strides[anchor_idx].grid1; | |
| const int stride = grid_strides[anchor_idx].stride; | |
| // yolox/models/yolo_head.py decode logic | |
| // outputs[..., :2] = (outputs[..., :2] + grids) * strides | |
| // outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides | |
| float x_center = (feat_ptr[0] + grid0) * stride; | |
| float y_center = (feat_ptr[1] + grid1) * stride; | |
| float w = exp(feat_ptr[2]) * stride; | |
| float h = exp(feat_ptr[3]) * stride; | |
| float x0 = x_center - w * 0.5f; | |
| float y0 = y_center - h * 0.5f; | |
| float box_objectness = feat_ptr[4]; | |
| for (int class_idx = 0; class_idx < num_class; class_idx++) | |
| { | |
| float box_cls_score = feat_ptr[5 + class_idx]; | |
| float box_prob = box_objectness * box_cls_score; | |
| if (box_prob > prob_threshold) | |
| { | |
| Object obj; | |
| obj.rect.x = x0; | |
| obj.rect.y = y0; | |
| obj.rect.width = w; | |
| obj.rect.height = h; | |
| obj.label = class_idx; | |
| obj.prob = box_prob; | |
| objects.push_back(obj); | |
| } | |
| } // class loop | |
| feat_ptr += feat_blob.w; | |
| } // point anchor loop | |
| } | |
| static int detect_yolox(const cv::Mat& bgr, std::vector<Object>& objects) | |
| { | |
| ncnn::Net yolox; | |
| yolox.opt.use_vulkan_compute = true; | |
| // yolox.opt.use_bf16_storage = true; | |
| // Focus in yolov5 | |
| yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator); | |
| // original pretrained model from https://github.com/Megvii-BaseDetection/YOLOX | |
| // ncnn model param: https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s_ncnn.tar.gz | |
| yolox.load_param("yolox.param"); | |
| yolox.load_model("yolox.bin"); | |
| int img_w = bgr.cols; | |
| int img_h = bgr.rows; | |
| int w = img_w; | |
| int h = img_h; | |
| float scale = 1.f; | |
| if (w > h) | |
| { | |
| scale = (float)YOLOX_TARGET_SIZE / w; | |
| w = YOLOX_TARGET_SIZE; | |
| h = h * scale; | |
| } | |
| else | |
| { | |
| scale = (float)YOLOX_TARGET_SIZE / h; | |
| h = YOLOX_TARGET_SIZE; | |
| w = w * scale; | |
| } | |
| ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, img_w, img_h, w, h); | |
| // pad to YOLOX_TARGET_SIZE rectangle | |
| int wpad = YOLOX_TARGET_SIZE - w; | |
| int hpad = YOLOX_TARGET_SIZE - h; | |
| ncnn::Mat in_pad; | |
| // different from yolov5, yolox only pad on bottom and right side, | |
| // which means users don't need to extra padding info to decode boxes coordinate. | |
| ncnn::copy_make_border(in, in_pad, 0, hpad, 0, wpad, ncnn::BORDER_CONSTANT, 114.f); | |
| ncnn::Extractor ex = yolox.create_extractor(); | |
| ex.input("images", in_pad); | |
| std::vector<Object> proposals; | |
| { | |
| ncnn::Mat out; | |
| ex.extract("output", out); | |
| static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX | |
| std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0])); | |
| std::vector<GridAndStride> grid_strides; | |
| generate_grids_and_stride(YOLOX_TARGET_SIZE, strides, grid_strides); | |
| generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals); | |
| } | |
| // sort all proposals by score from highest to lowest | |
| qsort_descent_inplace(proposals); | |
| // apply nms with nms_threshold | |
| std::vector<int> picked; | |
| nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH); | |
| int count = picked.size(); | |
| objects.resize(count); | |
| for (int i = 0; i < count; i++) | |
| { | |
| objects[i] = proposals[picked[i]]; | |
| // adjust offset to original unpadded | |
| float x0 = (objects[i].rect.x) / scale; | |
| float y0 = (objects[i].rect.y) / scale; | |
| float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
| float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
| // clip | |
| x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
| y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
| x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
| y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
| objects[i].rect.x = x0; | |
| objects[i].rect.y = y0; | |
| objects[i].rect.width = x1 - x0; | |
| objects[i].rect.height = y1 - y0; | |
| } | |
| return 0; | |
| } | |
| static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) | |
| { | |
| static const char* class_names[] = { | |
| "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", | |
| "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", | |
| "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", | |
| "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", | |
| "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", | |
| "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", | |
| "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", | |
| "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", | |
| "hair drier", "toothbrush" | |
| }; | |
| cv::Mat image = bgr.clone(); | |
| for (size_t i = 0; i < objects.size(); i++) | |
| { | |
| const Object& obj = objects[i]; | |
| fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, | |
| obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); | |
| cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); | |
| char text[256]; | |
| sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); | |
| int baseLine = 0; | |
| cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); | |
| int x = obj.rect.x; | |
| int y = obj.rect.y - label_size.height - baseLine; | |
| if (y < 0) | |
| y = 0; | |
| if (x + label_size.width > image.cols) | |
| x = image.cols - label_size.width; | |
| cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), | |
| cv::Scalar(255, 255, 255), -1); | |
| cv::putText(image, text, cv::Point(x, y + label_size.height), | |
| cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); | |
| } | |
| cv::imshow("image", image); | |
| cv::waitKey(0); | |
| } | |
| int main(int argc, char** argv) | |
| { | |
| if (argc != 2) | |
| { | |
| fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); | |
| return -1; | |
| } | |
| const char* imagepath = argv[1]; | |
| cv::Mat m = cv::imread(imagepath, 1); | |
| if (m.empty()) | |
| { | |
| fprintf(stderr, "cv::imread %s failed\n", imagepath); | |
| return -1; | |
| } | |
| std::vector<Object> objects; | |
| detect_yolox(m, objects); | |
| draw_objects(m, objects); | |
| return 0; | |
| } | |