Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # -*- coding:utf-8 -*- | |
| # Copyright (c) Megvii, Inc. and its affiliates. | |
| import argparse | |
| import os | |
| from loguru import logger | |
| import torch | |
| from yolox.exp import get_exp | |
| def make_parser(): | |
| parser = argparse.ArgumentParser("YOLOX torchscript deploy") | |
| parser.add_argument( | |
| "--output-name", type=str, default="yolox.torchscript.pt", help="output name of models" | |
| ) | |
| parser.add_argument("--batch-size", type=int, default=1, help="batch size") | |
| parser.add_argument( | |
| "-f", | |
| "--exp_file", | |
| default=None, | |
| type=str, | |
| help="experiment description file", | |
| ) | |
| parser.add_argument("-expn", "--experiment-name", type=str, default=None) | |
| parser.add_argument("-n", "--name", type=str, default=None, help="model name") | |
| parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt path") | |
| parser.add_argument( | |
| "--decode_in_inference", | |
| action="store_true", | |
| help="decode in inference or not" | |
| ) | |
| parser.add_argument( | |
| "opts", | |
| help="Modify config options using the command-line", | |
| default=None, | |
| nargs=argparse.REMAINDER, | |
| ) | |
| return parser | |
| def main(): | |
| args = make_parser().parse_args() | |
| logger.info("args value: {}".format(args)) | |
| exp = get_exp(args.exp_file, args.name) | |
| exp.merge(args.opts) | |
| if not args.experiment_name: | |
| args.experiment_name = exp.exp_name | |
| model = exp.get_model() | |
| if args.ckpt is None: | |
| file_name = os.path.join(exp.output_dir, args.experiment_name) | |
| ckpt_file = os.path.join(file_name, "best_ckpt.pth") | |
| else: | |
| ckpt_file = args.ckpt | |
| # load the model state dict | |
| ckpt = torch.load(ckpt_file, map_location="cpu") | |
| model.eval() | |
| if "model" in ckpt: | |
| ckpt = ckpt["model"] | |
| model.load_state_dict(ckpt) | |
| model.head.decode_in_inference = args.decode_in_inference | |
| logger.info("loading checkpoint done.") | |
| dummy_input = torch.randn(args.batch_size, 3, exp.test_size[0], exp.test_size[1]) | |
| mod = torch.jit.trace(model, dummy_input) | |
| mod.save(args.output_name) | |
| logger.info("generated torchscript model named {}".format(args.output_name)) | |
| if __name__ == "__main__": | |
| main() | |