Spaces:
Runtime error
Runtime error
| # import unittest | |
| # import requests | |
| # from PIL import Image | |
| # from open_flamingo import create_model_and_transforms | |
| # class TestFlamingoModel(unittest.TestCase): | |
| # def test_forward_pass(self): | |
| # model, image_processor, tokenizer = create_model_and_transforms( | |
| # clip_vision_encoder_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
| # clip_processor_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
| # lang_encoder_path="hf-internal-testing/tiny-random-OPTModel", | |
| # tokenizer_path="hf-internal-testing/tiny-random-OPTModel", | |
| # ) | |
| # image = Image.open( | |
| # requests.get( | |
| # "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True | |
| # ).raw | |
| # ) | |
| # vis_x = image_processor(images=[image, image], return_tensors="pt")[ | |
| # "pixel_values" | |
| # ] | |
| # vis_x = vis_x.unsqueeze(1).unsqueeze(1) | |
| # lang_x = tokenizer( | |
| # ["<|#image#|> A dog", "<|#image#|> A cat"], | |
| # max_length=10, | |
| # padding=True, | |
| # truncation=True, | |
| # return_tensors="pt", | |
| # ) | |
| # # try batched forward pass | |
| # model(vis_x, lang_x["input_ids"], attention_mask=lang_x["attention_mask"]) | |
| # def test_generate(self): | |
| # model, image_processor, tokenizer = create_model_and_transforms( | |
| # clip_vision_encoder_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
| # clip_processor_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
| # lang_encoder_path="hf-internal-testing/tiny-random-OPTModel", | |
| # tokenizer_path="hf-internal-testing/tiny-random-OPTModel", | |
| # ) | |
| # tokenizer.padding_side = ( | |
| # "left" # we want to pad on the left side for generation | |
| # ) | |
| # image = Image.open( | |
| # requests.get( | |
| # "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True | |
| # ).raw | |
| # ) | |
| # vis_x = image_processor(images=[image, image], return_tensors="pt")[ | |
| # "pixel_values" | |
| # ] | |
| # vis_x = vis_x.unsqueeze(1).unsqueeze(1) | |
| # lang_x = tokenizer( | |
| # ["<|#image#|> A dog", "<|#image#|> A cat <|endofchunk|>"], | |
| # max_length=10, | |
| # padding=True, | |
| # truncation=True, | |
| # return_tensors="pt", | |
| # ) | |
| # # try batched generation | |
| # model.generate( | |
| # vis_x, | |
| # lang_x["input_ids"], | |
| # attention_mask=lang_x["attention_mask"], | |
| # max_new_tokens=20, | |
| # ) | |
| # if __name__ == "__main__": | |
| # unittest.main() | |