Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team All rights reserved. | |
| # Copyright 2021 NVIDIA Corporation. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| A subclass of `Trainer` specific to Question-Answering tasks | |
| """ | |
| import logging | |
| import os | |
| import quant_trainer | |
| import torch | |
| from torch.utils.data import DataLoader | |
| from transformers import Trainer, is_torch_tpu_available | |
| from transformers.trainer_utils import PredictionOutput | |
| logger = logging.getLogger(__name__) | |
| if is_torch_tpu_available(check_device=False): | |
| import torch_xla.core.xla_model as xm | |
| import torch_xla.debug.metrics as met | |
| class QuestionAnsweringTrainer(Trainer): | |
| def __init__(self, *args, eval_examples=None, post_process_function=None, quant_trainer_args=None, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.eval_examples = eval_examples | |
| self.post_process_function = post_process_function | |
| self.quant_trainer_args = quant_trainer_args | |
| self.calib_num = 128 # default number of calibration samples | |
| def get_calib_dataloader(self, calib_dataset=None): | |
| """ | |
| Returns the calibration dataloader :class:`~torch.utils.data.DataLoader`. | |
| Args: | |
| calib_dataset (:obj:`torch.utils.data.Dataset`, `optional`) | |
| """ | |
| if calib_dataset is None and self.calib_dataset is None: | |
| raise ValueError("Trainer: calibration requires an calib_dataset.") | |
| calib_dataset = calib_dataset if calib_dataset is not None else self.calib_dataset | |
| calib_dataset = self._remove_unused_columns(calib_dataset, description="Calibration") | |
| return DataLoader( | |
| calib_dataset, | |
| batch_size=self.args.eval_batch_size, | |
| collate_fn=self.data_collator, | |
| drop_last=self.args.dataloader_drop_last, | |
| num_workers=self.args.dataloader_num_workers, | |
| pin_memory=self.args.dataloader_pin_memory, | |
| shuffle=True, | |
| ) | |
| def calibrate(self, calib_dataset=None): | |
| calib_dataset = self.train_dataset if calib_dataset is None else calib_dataset | |
| calib_dataloader = self.get_calib_dataloader(calib_dataset) | |
| model = self.model | |
| quant_trainer.configure_model(model, self.quant_trainer_args, calib=True) | |
| model.eval() | |
| quant_trainer.enable_calibration(model) | |
| logger.info("***** Running calibration *****") | |
| logger.info(f" Num examples = {self.calib_num}") | |
| logger.info(f" Batch size = {calib_dataloader.batch_size}") | |
| for step, inputs in enumerate(calib_dataloader): | |
| # Prediction step | |
| loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only=True) | |
| if (step + 1) * calib_dataloader.batch_size >= self.calib_num: | |
| break | |
| quant_trainer.finish_calibration(model, self.quant_trainer_args) | |
| self.model = model | |
| def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"): | |
| eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset | |
| eval_dataloader = self.get_eval_dataloader(eval_dataset) | |
| eval_examples = self.eval_examples if eval_examples is None else eval_examples | |
| # Temporarily disable metric computation, we will do it in the loop here. | |
| compute_metrics = self.compute_metrics | |
| self.compute_metrics = None | |
| eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop | |
| try: | |
| output = eval_loop( | |
| eval_dataloader, | |
| description="Evaluation", | |
| # No point gathering the predictions if there are no metrics, otherwise we defer to | |
| # self.args.prediction_loss_only | |
| prediction_loss_only=True if compute_metrics is None else None, | |
| ignore_keys=ignore_keys, | |
| ) | |
| finally: | |
| self.compute_metrics = compute_metrics | |
| if self.post_process_function is not None and self.compute_metrics is not None: | |
| eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) | |
| metrics = self.compute_metrics(eval_preds) | |
| # Prefix all keys with metric_key_prefix + '_' | |
| for key in list(metrics.keys()): | |
| if not key.startswith(f"{metric_key_prefix}_"): | |
| metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) | |
| self.log(metrics) | |
| else: | |
| metrics = {} | |
| if self.args.tpu_metrics_debug or self.args.debug: | |
| # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) | |
| xm.master_print(met.metrics_report()) | |
| self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) | |
| return metrics | |
| def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"): | |
| predict_dataloader = self.get_test_dataloader(predict_dataset) | |
| # Temporarily disable metric computation, we will do it in the loop here. | |
| compute_metrics = self.compute_metrics | |
| self.compute_metrics = None | |
| eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop | |
| try: | |
| output = eval_loop( | |
| predict_dataloader, | |
| description="Prediction", | |
| # No point gathering the predictions if there are no metrics, otherwise we defer to | |
| # self.args.prediction_loss_only | |
| prediction_loss_only=True if compute_metrics is None else None, | |
| ignore_keys=ignore_keys, | |
| ) | |
| finally: | |
| self.compute_metrics = compute_metrics | |
| if self.post_process_function is None or self.compute_metrics is None: | |
| return output | |
| predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict") | |
| metrics = self.compute_metrics(predictions) | |
| # Prefix all keys with metric_key_prefix + '_' | |
| for key in list(metrics.keys()): | |
| if not key.startswith(f"{metric_key_prefix}_"): | |
| metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) | |
| return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics) | |
| def save_onnx(self, output_dir="./"): | |
| eval_dataset = self.eval_dataset | |
| eval_dataloader = self.get_eval_dataloader(eval_dataset) | |
| batch = next(iter(eval_dataloader)) | |
| # saving device - to make it consistent | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # convert to tuple | |
| input_tuple = tuple(v.to(device) for k, v in batch.items()) | |
| logger.info("Converting model to be onnx compatible") | |
| from pytorch_quantization.nn import TensorQuantizer | |
| TensorQuantizer.use_fb_fake_quant = True | |
| model = self.model.to(device) | |
| model.eval() | |
| model.float() | |
| model_to_save = model.module if hasattr(model, "module") else model | |
| quant_trainer.configure_model(model_to_save, self.quant_trainer_args) | |
| output_model_file = os.path.join(output_dir, "model.onnx") | |
| logger.info(f"exporting model to {output_model_file}") | |
| axes = {0: "batch_size", 1: "seq_len"} | |
| torch.onnx.export( | |
| model_to_save, | |
| input_tuple, | |
| output_model_file, | |
| export_params=True, | |
| opset_version=13, | |
| do_constant_folding=True, | |
| input_names=["input_ids", "attention_mask", "token_type_ids"], | |
| output_names=["output_start_logits", "output_end_logits"], | |
| dynamic_axes={ | |
| "input_ids": axes, | |
| "attention_mask": axes, | |
| "token_type_ids": axes, | |
| "output_start_logits": axes, | |
| "output_end_logits": axes, | |
| }, | |
| verbose=True, | |
| ) | |
| logger.info("onnx export finished") | |