Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: | |
| # hack it in for now: | |
| import sys | |
| from pathlib import Path | |
| git_repo_path = Path(__file__).resolve().parents[3] / "src" | |
| sys.path.insert(1, str(git_repo_path)) | |
| import dataclasses # noqa | |
| import io # noqa | |
| import itertools # noqa | |
| import json # noqa | |
| import os # noqa | |
| import unittest # noqa | |
| from copy import deepcopy # noqa | |
| from parameterized import parameterized # noqa | |
| from transformers import TrainingArguments, is_torch_available # noqa | |
| from transformers.deepspeed import is_deepspeed_available # noqa | |
| from transformers.file_utils import WEIGHTS_NAME # noqa | |
| from transformers.testing_utils import ( # noqa | |
| CaptureLogger, | |
| ExtendSysPath, | |
| TestCasePlus, | |
| execute_subprocess_async, | |
| get_gpu_count, | |
| mockenv_context, | |
| require_deepspeed, | |
| require_torch_gpu, | |
| require_torch_multi_gpu, | |
| slow, | |
| ) | |
| from transformers.trainer_utils import set_seed # noqa | |
| set_seed(42) | |
| models = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} | |
| ZERO2 = "zero2" | |
| ZERO3 = "zero3" | |
| stages = [ZERO2, ZERO3] | |
| def custom_name_func(func, param_num, param): | |
| # customize the test name generator function as we want both params to appear in the sub-test | |
| # name, as by default it shows only the first param | |
| param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) | |
| return f"{func.__name__}_{param_based_name}" | |
| # Cartesian-product of zero stages with models to test | |
| params = list(itertools.product(stages, models.keys())) | |
| class TestDeepSpeedWav2Vec2(TestCasePlus): | |
| def test_fp32_non_distributed(self, stage, model): | |
| self.run_and_check( | |
| stage=stage, | |
| model=model, | |
| distributed=False, | |
| fp16=False, | |
| ) | |
| def test_fp32_distributed(self, stage, model): | |
| self.run_and_check( | |
| stage=stage, | |
| model=model, | |
| distributed=True, | |
| fp16=False, | |
| ) | |
| def test_fp16_non_distributed(self, stage, model): | |
| self.run_and_check( | |
| stage=stage, | |
| model=model, | |
| distributed=False, | |
| fp16=True, | |
| ) | |
| def test_fp16_distributed(self, stage, model): | |
| self.run_and_check( | |
| stage=stage, | |
| model=model, | |
| distributed=True, | |
| fp16=True, | |
| ) | |
| def do_checks(self, output_dir): | |
| # XXX: run_asr is premature and doesn't save any results | |
| # so all we check for now is that the process didn't fail | |
| pass | |
| # XXX: need to do better validation beyond just that the run was successful | |
| def run_and_check( | |
| self, | |
| stage: str, | |
| model: str, | |
| eval_steps: int = 10, | |
| distributed: bool = True, | |
| quality_checks: bool = True, | |
| fp16: bool = True, | |
| ): | |
| model_name = models[model] | |
| output_dir = self.run_trainer( | |
| stage=stage, | |
| model_name=model_name, | |
| eval_steps=eval_steps, | |
| num_train_epochs=1, | |
| distributed=distributed, | |
| fp16=fp16, | |
| ) | |
| self.do_checks(output_dir) | |
| return output_dir | |
| def run_trainer( | |
| self, | |
| stage: str, | |
| model_name: str, | |
| eval_steps: int = 10, | |
| num_train_epochs: int = 1, | |
| distributed: bool = True, | |
| fp16: bool = True, | |
| ): | |
| output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) | |
| args = f""" | |
| --model_name_or_path {model_name} | |
| --dataset_name hf-internal-testing/librispeech_asr_dummy | |
| --dataset_config_name clean | |
| --train_split_name validation | |
| --validation_split_name validation | |
| --output_dir {output_dir} | |
| --num_train_epochs {str(num_train_epochs)} | |
| --per_device_train_batch_size 2 | |
| --per_device_eval_batch_size 2 | |
| --evaluation_strategy steps | |
| --learning_rate 5e-4 | |
| --warmup_steps 8 | |
| --orthography timit | |
| --preprocessing_num_workers 1 | |
| --group_by_length | |
| --freeze_feature_extractor | |
| --report_to none | |
| --save_steps 0 | |
| --eval_steps {eval_steps} | |
| --report_to none | |
| """.split() | |
| if fp16: | |
| args.extend(["--fp16"]) | |
| # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, | |
| # hence the separate config files | |
| ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() | |
| script = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] | |
| launcher = self.get_launcher(distributed) | |
| cmd = launcher + script + args + ds_args | |
| # keep for quick debug | |
| # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die | |
| execute_subprocess_async(cmd, env=self.get_env()) | |
| return output_dir | |
| def get_launcher(self, distributed=False): | |
| # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup | |
| # - it won't be able to handle that | |
| # 2. for now testing with just 2 gpus max (since some quality tests may give different | |
| # results with mode gpus because we use very little data) | |
| num_gpus = min(2, get_gpu_count()) if distributed else 1 | |
| return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split() | |