Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| """ | |
| Fine-tuning a 🤗 Transformers model for image classification. | |
| Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
| https://huggingface.co/models?filter=image-classification | |
| """ | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import evaluate | |
| import numpy as np | |
| import tensorflow as tf | |
| from datasets import load_dataset | |
| from PIL import Image | |
| import transformers | |
| from transformers import ( | |
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
| AutoConfig, | |
| AutoImageProcessor, | |
| DefaultDataCollator, | |
| HfArgumentParser, | |
| PushToHubCallback, | |
| TFAutoModelForImageClassification, | |
| TFTrainingArguments, | |
| create_optimizer, | |
| set_seed, | |
| ) | |
| from transformers.keras_callbacks import KerasMetricCallback | |
| from transformers.trainer_utils import get_last_checkpoint, is_main_process | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| logger = logging.getLogger(__name__) | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.28.0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") | |
| MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) | |
| MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
| def pil_loader(path: str): | |
| with open(path, "rb") as f: | |
| im = Image.open(f) | |
| return im.convert("RGB") | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify | |
| them on the command line. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." | |
| }, | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) | |
| validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) | |
| train_val_split: Optional[float] = field( | |
| default=0.15, metadata={"help": "Percent to split off of train for validation."} | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): | |
| raise ValueError( | |
| "You must specify either a dataset name from the hub or a train and/or validation directory." | |
| ) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| default="google/vit-base-patch16-224-in21k", | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, | |
| ) | |
| model_type: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) | |
| use_auth_token: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
| "with private models)." | |
| ) | |
| }, | |
| ) | |
| ignore_mismatched_sizes: bool = field( | |
| default=False, | |
| metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, | |
| ) | |
| def center_crop(image, size): | |
| size = (size, size) if isinstance(size, int) else size | |
| orig_height, orig_width, _ = image.shape | |
| crop_height, crop_width = size | |
| top = (orig_height - orig_width) // 2 | |
| left = (orig_width - crop_width) // 2 | |
| image = tf.image.crop_to_bounding_box(image, top, left, crop_height, crop_width) | |
| return image | |
| # Numpy and TensorFlow compatible version of PyTorch RandomResizedCrop. Code adapted from: | |
| # https://pytorch.org/vision/main/_modules/torchvision/transforms/transforms.html#RandomResizedCrop | |
| def random_crop(image, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)): | |
| height, width, _ = image.shape | |
| area = height * width | |
| log_ratio = np.log(ratio) | |
| for _ in range(10): | |
| target_area = np.random.uniform(*scale) * area | |
| aspect_ratio = np.exp(np.random.uniform(*log_ratio)) | |
| w = int(round(np.sqrt(target_area * aspect_ratio))) | |
| h = int(round(np.sqrt(target_area / aspect_ratio))) | |
| if 0 < w <= width and 0 < h <= height: | |
| i = np.random.randint(0, height - h + 1) | |
| j = np.random.randint(0, width - w + 1) | |
| return image[i : i + h, j : j + w, :] | |
| # Fallback to central crop | |
| in_ratio = float(width) / float(height) | |
| w = width if in_ratio < min(ratio) else int(round(height * max(ratio))) | |
| h = height if in_ratio > max(ratio) else int(round(width / min(ratio))) | |
| i = (height - h) // 2 | |
| j = (width - w) // 2 | |
| return image[i : i + h, j : j + w, :] | |
| def random_resized_crop(image, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)): | |
| size = (size, size) if isinstance(size, int) else size | |
| image = random_crop(image, scale, ratio) | |
| image = tf.image.resize(image, size) | |
| return image | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if not (training_args.do_train or training_args.do_eval or training_args.do_predict): | |
| exit("Must specify at least one of --do_train, --do_eval or --do_predict!") | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/TensorFlow versions. | |
| send_example_telemetry("run_image_classification", model_args, data_args, framework="tensorflow") | |
| # Checkpoints. Find the checkpoint the use when loading the model. | |
| checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| if is_main_process(training_args.local_rank): | |
| transformers.utils.logging.set_verbosity_info() | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # region Dataset and labels | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Initialize our dataset and prepare it for the 'image-classification' task. | |
| if data_args.dataset_name is not None: | |
| dataset = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| task="image-classification", | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_dir is not None: | |
| data_files["train"] = os.path.join(data_args.train_dir, "**") | |
| if data_args.validation_dir is not None: | |
| data_files["validation"] = os.path.join(data_args.validation_dir, "**") | |
| dataset = load_dataset( | |
| "imagefolder", | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| task="image-classification", | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # Prepare label mappings. | |
| # We'll include these in the model's config to get human readable labels in the Inference API. | |
| labels = dataset["train"].features["labels"].names | |
| label2id, id2label = {}, {} | |
| for i, label in enumerate(labels): | |
| label2id[label] = str(i) | |
| id2label[str(i)] = label | |
| # Load model image processor and configuration | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name or model_args.model_name_or_path, | |
| num_labels=len(labels), | |
| label2id=label2id, | |
| id2label=id2label, | |
| finetuning_task="image-classification", | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| image_processor = AutoImageProcessor.from_pretrained( | |
| model_args.image_processor_name or model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| # If we don't have a validation split, split off a percentage of train as validation. | |
| data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split | |
| if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: | |
| split = dataset["train"].train_test_split(data_args.train_val_split) | |
| dataset["train"] = split["train"] | |
| dataset["validation"] = split["test"] | |
| # Define our data preprocessing function. It takes an image file path as input and returns | |
| # Write a note describing the resizing behaviour. | |
| if "shortest_edge" in image_processor.size: | |
| # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable. | |
| image_size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"]) | |
| else: | |
| image_size = (image_processor.size["height"], image_processor.size["width"]) | |
| def _train_transforms(image): | |
| img_size = image_size | |
| image = tf.keras.utils.img_to_array(image) | |
| image = random_resized_crop(image, size=img_size) | |
| image = tf.image.random_flip_left_right(image) | |
| image /= 255.0 | |
| image = (image - image_processor.image_mean) / image_processor.image_std | |
| image = tf.transpose(image, perm=[2, 0, 1]) | |
| return image | |
| def _val_transforms(image): | |
| image = tf.keras.utils.img_to_array(image) | |
| image = tf.image.resize(image, size=image_size) | |
| # image = np.array(image) # FIXME - use tf.image function | |
| image = center_crop(image, size=image_size) | |
| image /= 255.0 | |
| image = (image - image_processor.image_mean) / image_processor.image_std | |
| image = tf.transpose(image, perm=[2, 0, 1]) | |
| return image | |
| def train_transforms(example_batch): | |
| """Apply _train_transforms across a batch.""" | |
| example_batch["pixel_values"] = [ | |
| _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] | |
| ] | |
| return example_batch | |
| def val_transforms(example_batch): | |
| """Apply _val_transforms across a batch.""" | |
| example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]] | |
| return example_batch | |
| train_dataset = None | |
| if training_args.do_train: | |
| if "train" not in dataset: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = dataset["train"] | |
| if data_args.max_train_samples is not None: | |
| train_dataset = train_dataset.shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) | |
| train_dataset = train_dataset.map( | |
| train_transforms, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| if "validation" not in dataset: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_dataset = dataset["validation"] | |
| if data_args.max_eval_samples is not None: | |
| eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) | |
| # Set the validation transforms | |
| eval_dataset = eval_dataset.map( | |
| val_transforms, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| predict_dataset = None | |
| if training_args.do_predict: | |
| if "test" not in dataset: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_dataset = dataset["test"] | |
| if data_args.max_predict_samples is not None: | |
| predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) | |
| # Set the test transforms | |
| predict_dataset = predict_dataset.map( | |
| val_transforms, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| collate_fn = DefaultDataCollator(return_tensors="np") | |
| # Load the accuracy metric from the datasets package | |
| metric = evaluate.load("accuracy") | |
| # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
| # predictions and label_ids field) and has to return a dictionary string to float. | |
| def compute_metrics(p): | |
| """Computes accuracy on a batch of predictions""" | |
| logits, label_ids = p | |
| predictions = np.argmax(logits, axis=-1) | |
| metrics = metric.compute(predictions=predictions, references=label_ids) | |
| return metrics | |
| with training_args.strategy.scope(): | |
| if checkpoint is None: | |
| model_path = model_args.model_name_or_path | |
| else: | |
| model_path = checkpoint | |
| model = TFAutoModelForImageClassification.from_pretrained( | |
| model_path, | |
| config=config, | |
| from_pt=bool(".bin" in model_path), | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, | |
| ) | |
| num_replicas = training_args.strategy.num_replicas_in_sync | |
| total_train_batch_size = training_args.per_device_train_batch_size * num_replicas | |
| total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas | |
| dataset_options = tf.data.Options() | |
| dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
| if training_args.do_train: | |
| num_train_steps = int(len(train_dataset) * training_args.num_train_epochs) | |
| if training_args.warmup_steps > 0: | |
| num_warmpup_steps = int(training_args.warmup_steps) | |
| elif training_args.warmup_ratio > 0: | |
| num_warmpup_steps = int(training_args.warmup_ratio * num_train_steps) | |
| else: | |
| num_warmpup_steps = 0 | |
| optimizer, _ = create_optimizer( | |
| init_lr=training_args.learning_rate, | |
| num_train_steps=num_train_steps, | |
| num_warmup_steps=num_warmpup_steps, | |
| adam_beta1=training_args.adam_beta1, | |
| adam_beta2=training_args.adam_beta2, | |
| adam_epsilon=training_args.adam_epsilon, | |
| weight_decay_rate=training_args.weight_decay, | |
| adam_global_clipnorm=training_args.max_grad_norm, | |
| ) | |
| # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
| # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
| # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
| # yourself if you use this method, whereas they are automatically inferred from the model input names when | |
| # using model.prepare_tf_dataset() | |
| # For more info see the docs: | |
| # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
| # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
| train_dataset = model.prepare_tf_dataset( | |
| train_dataset, | |
| shuffle=True, | |
| batch_size=total_train_batch_size, | |
| collate_fn=collate_fn, | |
| ).with_options(dataset_options) | |
| else: | |
| optimizer = None | |
| if training_args.do_eval: | |
| eval_dataset = model.prepare_tf_dataset( | |
| eval_dataset, | |
| shuffle=False, | |
| batch_size=total_eval_batch_size, | |
| collate_fn=collate_fn, | |
| ).with_options(dataset_options) | |
| if training_args.do_predict: | |
| predict_dataset = model.prepare_tf_dataset( | |
| predict_dataset, | |
| shuffle=False, | |
| batch_size=total_eval_batch_size, | |
| collate_fn=collate_fn, | |
| ).with_options(dataset_options) | |
| model.compile(optimizer=optimizer, jit_compile=training_args.xla, metrics=["accuracy"]) | |
| push_to_hub_model_id = training_args.push_to_hub_model_id | |
| if not push_to_hub_model_id: | |
| model_name = model_args.model_name_or_path.split("/")[-1] | |
| push_to_hub_model_id = f"{model_name}-finetuned-image-classification" | |
| model_card_kwargs = { | |
| "finetuned_from": model_args.model_name_or_path, | |
| "tasks": "image-classification", | |
| "dataset": data_args.dataset_name, | |
| "tags": ["image-classification", "tensorflow", "vision"], | |
| } | |
| callbacks = [] | |
| if eval_dataset is not None: | |
| callbacks.append(KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=eval_dataset)) | |
| if training_args.push_to_hub: | |
| callbacks.append( | |
| PushToHubCallback( | |
| output_dir=training_args.output_dir, | |
| hub_model_id=push_to_hub_model_id, | |
| hub_token=training_args.push_to_hub_token, | |
| tokenizer=image_processor, | |
| **model_card_kwargs, | |
| ) | |
| ) | |
| if training_args.do_train: | |
| model.fit( | |
| train_dataset, | |
| validation_data=eval_dataset, | |
| epochs=int(training_args.num_train_epochs), | |
| callbacks=callbacks, | |
| ) | |
| if training_args.do_eval: | |
| n_eval_batches = len(eval_dataset) | |
| eval_predictions = model.predict(eval_dataset, steps=n_eval_batches) | |
| eval_labels = dataset["validation"]["labels"][: n_eval_batches * total_eval_batch_size] | |
| eval_metrics = compute_metrics((eval_predictions.logits, eval_labels)) | |
| logging.info("Eval metrics:") | |
| for metric_name, value in eval_metrics.items(): | |
| logging.info(f"{metric_name}: {value:.3f}") | |
| if training_args.output_dir is not None: | |
| with open(os.path.join(training_args.output_dir, "all_results.json"), "w") as f: | |
| f.write(json.dumps(eval_metrics)) | |
| if training_args.do_predict: | |
| n_predict_batches = len(predict_dataset) | |
| test_predictions = model.predict(predict_dataset, steps=n_predict_batches) | |
| test_labels = dataset["validation"]["labels"][: n_predict_batches * total_eval_batch_size] | |
| test_metrics = compute_metrics((test_predictions.logits, test_labels)) | |
| logging.info("Test metrics:") | |
| for metric_name, value in test_metrics.items(): | |
| logging.info(f"{metric_name}: {value:.3f}") | |
| if training_args.output_dir is not None and not training_args.push_to_hub: | |
| # If we're not pushing to hub, at least save a local copy when we're done | |
| model.save_pretrained(training_args.output_dir) | |
| if __name__ == "__main__": | |
| main() | |