Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| from unittest import skip | |
| from unittest.mock import patch | |
| import tensorflow as tf | |
| from transformers.testing_utils import TestCasePlus, get_gpu_count, slow | |
| SRC_DIRS = [ | |
| os.path.join(os.path.dirname(__file__), dirname) | |
| for dirname in [ | |
| "text-generation", | |
| "text-classification", | |
| "token-classification", | |
| "language-modeling", | |
| "multiple-choice", | |
| "question-answering", | |
| "summarization", | |
| "translation", | |
| "image-classification", | |
| ] | |
| ] | |
| sys.path.extend(SRC_DIRS) | |
| if SRC_DIRS is not None: | |
| import run_clm | |
| import run_image_classification | |
| import run_mlm | |
| import run_ner | |
| import run_qa as run_squad | |
| import run_summarization | |
| import run_swag | |
| import run_text_classification | |
| import run_translation | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| def get_setup_file(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("-f") | |
| args = parser.parse_args() | |
| return args.f | |
| def get_results(output_dir): | |
| results = {} | |
| path = os.path.join(output_dir, "all_results.json") | |
| if os.path.exists(path): | |
| with open(path, "r") as f: | |
| results = json.load(f) | |
| else: | |
| raise ValueError(f"can't find {path}") | |
| return results | |
| def is_cuda_available(): | |
| return bool(tf.config.list_physical_devices("GPU")) | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class ExamplesTests(TestCasePlus): | |
| def test_run_text_classification(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_text_classification.py | |
| --model_name_or_path distilbert-base-uncased | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --train_file ./tests/fixtures/tests_samples/MRPC/train.csv | |
| --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv | |
| --do_train | |
| --do_eval | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=1 | |
| --learning_rate=1e-4 | |
| --max_steps=10 | |
| --warmup_steps=2 | |
| --seed=42 | |
| --max_seq_length=128 | |
| """.split() | |
| if is_cuda_available(): | |
| testargs.append("--fp16") | |
| with patch.object(sys, "argv", testargs): | |
| run_text_classification.main() | |
| # Reset the mixed precision policy so we don't break other tests | |
| tf.keras.mixed_precision.set_global_policy("float32") | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
| def test_run_clm(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_clm.py | |
| --model_name_or_path distilgpt2 | |
| --train_file ./tests/fixtures/sample_text.txt | |
| --validation_file ./tests/fixtures/sample_text.txt | |
| --do_train | |
| --do_eval | |
| --block_size 128 | |
| --per_device_train_batch_size 2 | |
| --per_device_eval_batch_size 1 | |
| --num_train_epochs 2 | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| """.split() | |
| if len(tf.config.list_physical_devices("GPU")) > 1: | |
| # Skipping because there are not enough batches to train the model + would need a drop_last to work. | |
| return | |
| with patch.object(sys, "argv", testargs): | |
| run_clm.main() | |
| result = get_results(tmp_dir) | |
| self.assertLess(result["eval_perplexity"], 100) | |
| def test_run_mlm(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_mlm.py | |
| --model_name_or_path distilroberta-base | |
| --train_file ./tests/fixtures/sample_text.txt | |
| --validation_file ./tests/fixtures/sample_text.txt | |
| --max_seq_length 64 | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --do_train | |
| --do_eval | |
| --prediction_loss_only | |
| --num_train_epochs=1 | |
| --learning_rate=1e-4 | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_mlm.main() | |
| result = get_results(tmp_dir) | |
| self.assertLess(result["eval_perplexity"], 42) | |
| def test_run_ner(self): | |
| # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu | |
| epochs = 7 if get_gpu_count() > 1 else 2 | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_ner.py | |
| --model_name_or_path bert-base-uncased | |
| --train_file tests/fixtures/tests_samples/conll/sample.json | |
| --validation_file tests/fixtures/tests_samples/conll/sample.json | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --do_train | |
| --do_eval | |
| --warmup_steps=2 | |
| --learning_rate=2e-4 | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=2 | |
| --num_train_epochs={epochs} | |
| --seed 7 | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_ner.main() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["accuracy"], 0.75) | |
| def test_run_squad(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_qa.py | |
| --model_name_or_path bert-base-uncased | |
| --version_2_with_negative | |
| --train_file tests/fixtures/tests_samples/SQUAD/sample.json | |
| --validation_file tests/fixtures/tests_samples/SQUAD/sample.json | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --max_steps=10 | |
| --warmup_steps=2 | |
| --do_train | |
| --do_eval | |
| --learning_rate=2e-4 | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=1 | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_squad.main() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["f1"], 30) | |
| self.assertGreaterEqual(result["exact"], 30) | |
| def test_run_swag(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_swag.py | |
| --model_name_or_path bert-base-uncased | |
| --train_file tests/fixtures/tests_samples/swag/sample.json | |
| --validation_file tests/fixtures/tests_samples/swag/sample.json | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --max_steps=20 | |
| --warmup_steps=2 | |
| --do_train | |
| --do_eval | |
| --learning_rate=2e-4 | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=1 | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_swag.main() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["val_accuracy"], 0.8) | |
| def test_run_summarization(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_summarization.py | |
| --model_name_or_path t5-small | |
| --train_file tests/fixtures/tests_samples/xsum/sample.json | |
| --validation_file tests/fixtures/tests_samples/xsum/sample.json | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --max_steps=50 | |
| --warmup_steps=8 | |
| --do_train | |
| --do_eval | |
| --learning_rate=2e-4 | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=1 | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_summarization.main() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["rouge1"], 10) | |
| self.assertGreaterEqual(result["rouge2"], 2) | |
| self.assertGreaterEqual(result["rougeL"], 7) | |
| self.assertGreaterEqual(result["rougeLsum"], 7) | |
| def test_run_translation(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_translation.py | |
| --model_name_or_path Rocketknight1/student_marian_en_ro_6_1 | |
| --source_lang en | |
| --target_lang ro | |
| --train_file tests/fixtures/tests_samples/wmt16/sample.json | |
| --validation_file tests/fixtures/tests_samples/wmt16/sample.json | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --warmup_steps=8 | |
| --do_train | |
| --do_eval | |
| --learning_rate=3e-3 | |
| --num_train_epochs 12 | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=1 | |
| --source_lang en_XX | |
| --target_lang ro_RO | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_translation.main() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["bleu"], 30) | |
| def test_run_image_classification(self): | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| run_image_classification.py | |
| --dataset_name hf-internal-testing/cats_vs_dogs_sample | |
| --model_name_or_path microsoft/resnet-18 | |
| --do_train | |
| --do_eval | |
| --learning_rate 1e-4 | |
| --per_device_train_batch_size 2 | |
| --per_device_eval_batch_size 1 | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --dataloader_num_workers 16 | |
| --num_train_epochs 2 | |
| --train_val_split 0.1 | |
| --seed 42 | |
| --ignore_mismatched_sizes True | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| run_image_classification.main() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["accuracy"], 0.7) | |