Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from transformers import AlbertConfig, is_tf_available | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import require_tf, slow | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING | |
| from transformers.models.albert.modeling_tf_albert import ( | |
| TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| TFAlbertForMaskedLM, | |
| TFAlbertForMultipleChoice, | |
| TFAlbertForPreTraining, | |
| TFAlbertForQuestionAnswering, | |
| TFAlbertForSequenceClassification, | |
| TFAlbertForTokenClassification, | |
| TFAlbertModel, | |
| ) | |
| class TFAlbertModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| embedding_size=16, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = 13 | |
| self.seq_length = 7 | |
| self.is_training = True | |
| self.use_input_mask = True | |
| self.use_token_type_ids = True | |
| self.use_labels = True | |
| self.vocab_size = 99 | |
| self.embedding_size = 16 | |
| self.hidden_size = 32 | |
| self.num_hidden_layers = 5 | |
| self.num_attention_heads = 4 | |
| self.intermediate_size = 37 | |
| self.hidden_act = "gelu" | |
| self.hidden_dropout_prob = 0.1 | |
| self.attention_probs_dropout_prob = 0.1 | |
| self.max_position_embeddings = 512 | |
| self.type_vocab_size = 16 | |
| self.type_sequence_label_size = 2 | |
| self.initializer_range = 0.02 | |
| self.num_labels = 3 | |
| self.num_choices = 4 | |
| self.scope = None | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = AlbertConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| embedding_size=self.embedding_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| ) | |
| return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def create_and_check_albert_model( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFAlbertModel(config=config) | |
| # inputs = {'input_ids': input_ids, | |
| # 'attention_mask': input_mask, | |
| # 'token_type_ids': token_type_ids} | |
| # sequence_output, pooled_output = model(**inputs) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| inputs = [input_ids, input_mask] | |
| result = model(inputs) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_albert_for_pretraining( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = TFAlbertForPreTraining(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_albert_for_masked_lm( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFAlbertForMaskedLM(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_albert_for_sequence_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = TFAlbertForSequenceClassification(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_albert_for_question_answering( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = TFAlbertForQuestionAnswering(config=config) | |
| inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
| result = model(inputs) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def create_and_check_albert_for_multiple_choice( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_choices = self.num_choices | |
| model = TFAlbertForMultipleChoice(config=config) | |
| multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
| multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
| multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
| inputs = { | |
| "input_ids": multiple_choice_inputs_ids, | |
| "attention_mask": multiple_choice_input_mask, | |
| "token_type_ids": multiple_choice_token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices]) | |
| def create_and_check_albert_for_token_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = TFAlbertForTokenClassification(config=config) | |
| inputs = { | |
| "input_ids": input_ids, | |
| "attention_mask": input_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| result = model(inputs) | |
| self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class TFAlbertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| TFAlbertModel, | |
| TFAlbertForPreTraining, | |
| TFAlbertForMaskedLM, | |
| TFAlbertForSequenceClassification, | |
| TFAlbertForQuestionAnswering, | |
| TFAlbertForTokenClassification, | |
| TFAlbertForMultipleChoice, | |
| ) | |
| if is_tf_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": TFAlbertModel, | |
| "fill-mask": TFAlbertForMaskedLM, | |
| "question-answering": TFAlbertForQuestionAnswering, | |
| "text-classification": TFAlbertForSequenceClassification, | |
| "token-classification": TFAlbertForTokenClassification, | |
| "zero-shot": TFAlbertForSequenceClassification, | |
| } | |
| if is_tf_available() | |
| else {} | |
| ) | |
| test_head_masking = False | |
| test_onnx = False | |
| # special case for ForPreTraining model | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
| if return_labels: | |
| if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): | |
| inputs_dict["sentence_order_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
| return inputs_dict | |
| def setUp(self): | |
| self.model_tester = TFAlbertModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_albert_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_albert_model(*config_and_inputs) | |
| def test_for_pretraining(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs) | |
| def test_for_masked_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs) | |
| def test_for_multiple_choice(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs) | |
| def test_model_common_attributes(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| list_lm_models = [TFAlbertForPreTraining, TFAlbertForMaskedLM] | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
| if model_class in list_lm_models: | |
| x = model.get_output_embeddings() | |
| assert isinstance(x, tf.keras.layers.Layer) | |
| name = model.get_bias() | |
| assert isinstance(name, dict) | |
| for k, v in name.items(): | |
| assert isinstance(v, tf.Variable) | |
| else: | |
| x = model.get_output_embeddings() | |
| assert x is None | |
| name = model.get_bias() | |
| assert name is None | |
| def test_model_from_pretrained(self): | |
| for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = TFAlbertModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class TFAlbertModelIntegrationTest(unittest.TestCase): | |
| def test_inference_masked_lm(self): | |
| model = TFAlbertForPreTraining.from_pretrained("albert-base-v2") | |
| input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) | |
| output = model(input_ids)[0] | |
| expected_shape = [1, 6, 30000] | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = tf.constant( | |
| [ | |
| [ | |
| [4.595668, 0.74462754, -1.818147], | |
| [4.5954347, 0.7454184, -1.8188258], | |
| [4.5954905, 0.7448235, -1.8182316], | |
| ] | |
| ] | |
| ) | |
| tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) | |