Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import sys | |
| import tempfile | |
| import unittest | |
| from pathlib import Path | |
| from transformers import ( | |
| CONFIG_MAPPING, | |
| FEATURE_EXTRACTOR_MAPPING, | |
| AutoConfig, | |
| AutoFeatureExtractor, | |
| Wav2Vec2Config, | |
| Wav2Vec2FeatureExtractor, | |
| ) | |
| from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir | |
| sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) | |
| from test_module.custom_configuration import CustomConfig # noqa E402 | |
| from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 | |
| SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures") | |
| SAMPLE_FEATURE_EXTRACTION_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json") | |
| SAMPLE_CONFIG = get_tests_dir("fixtures/dummy-config.json") | |
| class AutoFeatureExtractorTest(unittest.TestCase): | |
| def test_feature_extractor_from_model_shortcut(self): | |
| config = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") | |
| self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
| def test_feature_extractor_from_local_directory_from_key(self): | |
| config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
| self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
| def test_feature_extractor_from_local_directory_from_config(self): | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model_config = Wav2Vec2Config() | |
| # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally | |
| config_dict = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR).to_dict() | |
| config_dict.pop("feature_extractor_type") | |
| config = Wav2Vec2FeatureExtractor(**config_dict) | |
| # save in new folder | |
| model_config.save_pretrained(tmpdirname) | |
| config.save_pretrained(tmpdirname) | |
| config = AutoFeatureExtractor.from_pretrained(tmpdirname) | |
| # make sure private variable is not incorrectly saved | |
| dict_as_saved = json.loads(config.to_json_string()) | |
| self.assertTrue("_processor_class" not in dict_as_saved) | |
| self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
| def test_feature_extractor_from_local_file(self): | |
| config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG) | |
| self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
| def test_repo_not_found(self): | |
| with self.assertRaisesRegex( | |
| EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" | |
| ): | |
| _ = AutoFeatureExtractor.from_pretrained("bert-base") | |
| def test_revision_not_found(self): | |
| with self.assertRaisesRegex( | |
| EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" | |
| ): | |
| _ = AutoFeatureExtractor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") | |
| def test_feature_extractor_not_found(self): | |
| with self.assertRaisesRegex( | |
| EnvironmentError, | |
| "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", | |
| ): | |
| _ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model") | |
| def test_from_pretrained_dynamic_feature_extractor(self): | |
| feature_extractor = AutoFeatureExtractor.from_pretrained( | |
| "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True | |
| ) | |
| self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
| # Test feature extractor can be reloaded. | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| feature_extractor.save_pretrained(tmp_dir) | |
| reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir, trust_remote_code=True) | |
| self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
| def test_new_feature_extractor_registration(self): | |
| try: | |
| AutoConfig.register("custom", CustomConfig) | |
| AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor) | |
| # Trying to register something existing in the Transformers library will raise an error | |
| with self.assertRaises(ValueError): | |
| AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor) | |
| # Now that the config is registered, it can be used as any other config with the auto-API | |
| feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| feature_extractor.save_pretrained(tmp_dir) | |
| new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir) | |
| self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor) | |
| finally: | |
| if "custom" in CONFIG_MAPPING._extra_content: | |
| del CONFIG_MAPPING._extra_content["custom"] | |
| if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: | |
| del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | |