Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| from transformers.testing_utils import require_torch, require_vision | |
| from transformers.utils import is_torch_available, is_vision_available | |
| from ...test_image_processing_common import ImageProcessingSavingTestMixin | |
| if is_torch_available(): | |
| import torch | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import CLIPImageProcessor | |
| class CLIPImageProcessingTester(unittest.TestCase): | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=7, | |
| num_channels=3, | |
| image_size=18, | |
| min_resolution=30, | |
| max_resolution=400, | |
| do_resize=True, | |
| size=None, | |
| do_center_crop=True, | |
| crop_size=None, | |
| do_normalize=True, | |
| image_mean=[0.48145466, 0.4578275, 0.40821073], | |
| image_std=[0.26862954, 0.26130258, 0.27577711], | |
| do_convert_rgb=True, | |
| ): | |
| size = size if size is not None else {"shortest_edge": 20} | |
| crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.num_channels = num_channels | |
| self.image_size = image_size | |
| self.min_resolution = min_resolution | |
| self.max_resolution = max_resolution | |
| self.do_resize = do_resize | |
| self.size = size | |
| self.do_center_crop = do_center_crop | |
| self.crop_size = crop_size | |
| self.do_normalize = do_normalize | |
| self.image_mean = image_mean | |
| self.image_std = image_std | |
| self.do_convert_rgb = do_convert_rgb | |
| def prepare_image_processor_dict(self): | |
| return { | |
| "do_resize": self.do_resize, | |
| "size": self.size, | |
| "do_center_crop": self.do_center_crop, | |
| "crop_size": self.crop_size, | |
| "do_normalize": self.do_normalize, | |
| "image_mean": self.image_mean, | |
| "image_std": self.image_std, | |
| "do_convert_rgb": self.do_convert_rgb, | |
| } | |
| def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False): | |
| """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, | |
| or a list of PyTorch tensors if one specifies torchify=True. | |
| """ | |
| assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" | |
| if equal_resolution: | |
| image_inputs = [] | |
| for i in range(self.batch_size): | |
| image_inputs.append( | |
| np.random.randint( | |
| 255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8 | |
| ) | |
| ) | |
| else: | |
| image_inputs = [] | |
| for i in range(self.batch_size): | |
| width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2) | |
| image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8)) | |
| if not numpify and not torchify: | |
| # PIL expects the channel dimension as last dimension | |
| image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] | |
| if torchify: | |
| image_inputs = [torch.from_numpy(x) for x in image_inputs] | |
| return image_inputs | |
| class CLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): | |
| image_processing_class = CLIPImageProcessor if is_vision_available() else None | |
| def setUp(self): | |
| self.image_processor_tester = CLIPImageProcessingTester(self) | |
| def image_processor_dict(self): | |
| return self.image_processor_tester.prepare_image_processor_dict() | |
| def test_image_processor_properties(self): | |
| image_processing = self.image_processing_class(**self.image_processor_dict) | |
| self.assertTrue(hasattr(image_processing, "do_resize")) | |
| self.assertTrue(hasattr(image_processing, "size")) | |
| self.assertTrue(hasattr(image_processing, "do_center_crop")) | |
| self.assertTrue(hasattr(image_processing, "center_crop")) | |
| self.assertTrue(hasattr(image_processing, "do_normalize")) | |
| self.assertTrue(hasattr(image_processing, "image_mean")) | |
| self.assertTrue(hasattr(image_processing, "image_std")) | |
| self.assertTrue(hasattr(image_processing, "do_convert_rgb")) | |
| def test_image_processor_from_dict_with_kwargs(self): | |
| image_processor = self.image_processing_class.from_dict(self.image_processor_dict) | |
| self.assertEqual(image_processor.size, {"shortest_edge": 20}) | |
| self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) | |
| image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) | |
| self.assertEqual(image_processor.size, {"shortest_edge": 42}) | |
| self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) | |
| def test_batch_feature(self): | |
| pass | |
| def test_call_pil(self): | |
| # Initialize image_processing | |
| image_processing = self.image_processing_class(**self.image_processor_dict) | |
| # create random PIL images | |
| image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False) | |
| for image in image_inputs: | |
| self.assertIsInstance(image, Image.Image) | |
| # Test not batched input | |
| encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| 1, | |
| self.image_processor_tester.num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| # Test batched | |
| encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| self.image_processor_tester.batch_size, | |
| self.image_processor_tester.num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| def test_call_numpy(self): | |
| # Initialize image_processing | |
| image_processing = self.image_processing_class(**self.image_processor_dict) | |
| # create random numpy tensors | |
| image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True) | |
| for image in image_inputs: | |
| self.assertIsInstance(image, np.ndarray) | |
| # Test not batched input | |
| encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| 1, | |
| self.image_processor_tester.num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| # Test batched | |
| encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| self.image_processor_tester.batch_size, | |
| self.image_processor_tester.num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| def test_call_pytorch(self): | |
| # Initialize image_processing | |
| image_processing = self.image_processing_class(**self.image_processor_dict) | |
| # create random PyTorch tensors | |
| image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True) | |
| for image in image_inputs: | |
| self.assertIsInstance(image, torch.Tensor) | |
| # Test not batched input | |
| encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| 1, | |
| self.image_processor_tester.num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| # Test batched | |
| encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| self.image_processor_tester.batch_size, | |
| self.image_processor_tester.num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| class CLIPImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase): | |
| image_processing_class = CLIPImageProcessor if is_vision_available() else None | |
| def setUp(self): | |
| self.image_processor_tester = CLIPImageProcessingTester(self, num_channels=4) | |
| self.expected_encoded_image_num_channels = 3 | |
| def image_processor_dict(self): | |
| return self.image_processor_tester.prepare_image_processor_dict() | |
| def test_image_processor_properties(self): | |
| image_processing = self.image_processing_class(**self.image_processor_dict) | |
| self.assertTrue(hasattr(image_processing, "do_resize")) | |
| self.assertTrue(hasattr(image_processing, "size")) | |
| self.assertTrue(hasattr(image_processing, "do_center_crop")) | |
| self.assertTrue(hasattr(image_processing, "center_crop")) | |
| self.assertTrue(hasattr(image_processing, "do_normalize")) | |
| self.assertTrue(hasattr(image_processing, "image_mean")) | |
| self.assertTrue(hasattr(image_processing, "image_std")) | |
| self.assertTrue(hasattr(image_processing, "do_convert_rgb")) | |
| def test_batch_feature(self): | |
| pass | |
| def test_call_pil_four_channels(self): | |
| # Initialize image_processing | |
| image_processing = self.image_processing_class(**self.image_processor_dict) | |
| # create random PIL images | |
| image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False) | |
| for image in image_inputs: | |
| self.assertIsInstance(image, Image.Image) | |
| # Test not batched input | |
| encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| 1, | |
| self.expected_encoded_image_num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |
| # Test batched | |
| encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
| self.assertEqual( | |
| encoded_images.shape, | |
| ( | |
| self.image_processor_tester.batch_size, | |
| self.expected_encoded_image_num_channels, | |
| self.image_processor_tester.crop_size["height"], | |
| self.image_processor_tester.crop_size["width"], | |
| ), | |
| ) | |