File size: 7,911 Bytes
c17b112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import math
import cutlass.cute as cute
import cutlass
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import ast

def visualize_tv_layout(
    tiler_mn: tuple[int, int],
    tv_layout,                       # (((thr_shape),(val_shape)),
                                    #  ((thr_stride),(val_stride)))
    *,
    font_size: int = 10,
    cell_px: int = 70,
    grid_lw: float = 1.5,
    dpi: int = 100,
    max_rows: int = None,
    max_cols: int = None,
    color_fn=None,                  # optional (tid,vid) -> colour
):
    """Draw a T/V checkerboard for an arbitrary TV layout."""

    # -----------------------------------------------------------------
    # 1)  Build a real CuTe layout from the tuple the user passed
    # -----------------------------------------------------------------
    shape, stride = tv_layout

    def compute_recursive_size(shape):
        if isinstance(shape, int):
            return shape
        else:
            return math.prod(compute_recursive_size(i) for i in shape)

    n_thr = compute_recursive_size(shape[0])
    n_val = compute_recursive_size(shape[1])
    M, N  = tiler_mn

    # Apply max rows/cols limits if specified
    if max_rows is not None and max_rows > 0:
        M = min(M, max_rows)
    if max_cols is not None and max_cols > 0:
        N = min(N, max_cols)

    thr_ids = np.full((M, N), -1, dtype=int)
    val_ids = np.full((M, N), -1, dtype=int)
    filled  = np.zeros((M, N), dtype=bool)

    # -----------------------------------------------------------------
    # 2)  Query CuTe for every (tid, vid) → (m,n)
    # -----------------------------------------------------------------

    @cute.jit
    def g():
        tv_layout  = cute.make_layout(shape, stride=stride)
        tid_vals = []
        for tid in cutlass.range_constexpr(n_thr):
            vid_vals = []
            for vid in cutlass.range_constexpr(n_val):
                vid_vals.append(tv_layout((tid, vid)))
            tid_vals.append(vid_vals)
        return tid_vals
    vals = g()
    full_M, full_N = tiler_mn
    for tid in range(n_thr):
        for vid in range(n_val):
            pos = vals[tid][vid]
            n = pos // full_M
            m = pos % full_M
            # Skip if outside the display limits
            if m >= M or n >= N:
                continue
            if filled[m, n]:
                continue
            thr_ids[m, n] = tid
            val_ids[m, n] = vid
            filled[m, n]  = True

    # -----------------------------------------------------------------
    # 3)  Colours (default: pastel per-thread)
    # -----------------------------------------------------------------
    if color_fn is None:
        # pastel = list(plt.cm.Set3.colors) #  + plt.cm.Set2.colors + plt.cm.Set1.colors)
        color_palettes = [
            plt.cm.Set3.colors,
            plt.cm.Set2.colors,
            plt.cm.Set1.colors,
            # plt.cm.Pastel1.colors,
            # plt.cm.Pastel2.colors,
        ]
        color_palettes = [j for i in color_palettes for j in i]
        # breakpoint()
        # cmap = []
        # for i in range(n_thr):
        #     cmap += [[k * ((n_thr) - i)/ n_thr for k in j] for j in color_palettes]
        cmap = (color_palettes * n_thr)[:n_thr]
        # cmap   = (pastel * n_thr)[:n_thr]
        color_fn = lambda t, v: cmap[t % len(cmap)]

    bg_rgb = np.zeros((M, N, 3))
    for m in range(M):
        for n in range(N):
            tid = thr_ids[m, n]
            if tid >= 0:
                bg_rgb[m, n] = mcolors.to_rgb(color_fn(tid, val_ids[m, n]))

    # -----------------------------------------------------------------
    # 4)  Draw
    # -----------------------------------------------------------------
    fig_w, fig_h = N * cell_px / 100, M * cell_px / 100
    fig, ax      = plt.subplots(figsize=(fig_w, fig_h), dpi=dpi)
    ax.imshow(bg_rgb, interpolation="none")

    for m in range(M):
        for n in range(N):
            if thr_ids[m, n] >= 0:
                ax.text(
                    n, m, f"T{thr_ids[m,n]}\nV{val_ids[m,n]}",
                    ha="center", va="center",
                    fontsize=font_size, weight="bold"
                )

    ax.set_xticks(np.arange(N + 1) - 0.5)
    ax.set_yticks(np.arange(M + 1) - 0.5)
    ax.set_xticklabels([str(i) for i in range(N + 1)])
    ax.set_yticklabels([str(i) for i in range(M + 1)])
    ax.tick_params(axis='both', which='both', length=6, width=1)
    ax.tick_params(axis='x', which='both', top=True, bottom=False, labeltop=True, labelbottom=False)
    ax.tick_params(axis='y', which='both', left=True, right=False)
    ax.grid(which="major", color="black", linewidth=grid_lw)
    ax.set_xlim(-.5, N -.5); ax.set_ylim(M -.5, -.5)

    # Format title with colon notation
    ax.set_title(f"tv_layout = {shape}:{stride}", fontsize=font_size + 2, pad=12)
    plt.tight_layout()

    return fig

# visualize_tv_layout((32, 16), (((4,8,2,2),((2,2),(1,1))),((64,1,16,256),((32,8),(0,0)))), dpi=100, max_rows=16, max_cols=16)
# exit(0)

def gradio_visualize(tiler_mn_str, tv_layout_str, dpi, max_rows, max_cols):
    """Gradio wrapper for visualize_tv_layout."""
    try:
        # Parse input strings
        tiler_mn = ast.literal_eval(tiler_mn_str)

        # Support colon notation: (128,64):(1,128) or comma notation
        if ':' in tv_layout_str:
            # Split by colon to get shape and stride parts
            parts = tv_layout_str.split(':')
            if len(parts) != 2:
                raise ValueError("Colon format must be shape:stride")
            shape = ast.literal_eval(parts[0])
            stride = ast.literal_eval(parts[1])
            tv_layout = (shape, stride)
        else:
            # Traditional nested tuple format
            tv_layout = ast.literal_eval(tv_layout_str)

        fig = visualize_tv_layout(tiler_mn, tv_layout, dpi=dpi, max_rows=max_rows, max_cols=max_cols)
        return fig
    except Exception as e:
        # Return error message
        fig, ax = plt.subplots(figsize=(8, 4))
        ax.text(0.5, 0.5, f"Error: {str(e)}",
                ha='center', va='center', fontsize=12, color='red')
        ax.axis('off')
        return fig


# Create Gradio interface
with gr.Blocks(title="CuTe TV Layout Visualizer") as demo:
    gr.Markdown("# CuTe TV Layout Visualizer")
    gr.Markdown("Visualize thread/value (T/V) layouts for CuTe tensor operations.")

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Layout Parameters")
            tiler_mn = gr.Textbox(
                label="Tiler Dimensions (M, N)",
                value="(8, 8)",
                placeholder="(8, 8)"
            )
            tv_layout = gr.Textbox(
                label="TV Layout",
                value="((2, 2, 2), (2, 2, 2)):((1, 16, 4), (8, 2, 32))",
                lines=2
            )

            dpi = gr.Number(label="DPI", value=200, precision=0)
            max_rows = gr.Number(label="Max Rows (leave empty for no limit)", value=None, precision=0)
            max_cols = gr.Number(label="Max Cols (leave empty for no limit)", value=None, precision=0)

            visualize_btn = gr.Button("Visualize", variant="primary")

        with gr.Column():
            output_plot = gr.Plot(label="TV Layout Visualization")

    visualize_btn.click(
        fn=gradio_visualize,
        inputs=[tiler_mn, tv_layout, dpi, max_rows, max_cols],
        outputs=output_plot
    )

    # Add examples
    gr.Examples(
        examples=[
            ["(8, 8)", "((2, 2, 2), (2, 2, 2)):((1, 16, 4), (8, 2, 32))", 200, None, None],
            ["(4, 8)", "((4, 2), 4):((1, 16), 4)", 200, None, None],
            ["(8, 4)", "((4, 2), 4):((8, 4), 1)", 200, None, None],
        ],
        inputs=[tiler_mn, tv_layout, dpi, max_rows, max_cols],
    )

if __name__ == "__main__":
    demo.launch()