Spaces:
Sleeping
Sleeping
File size: 18,150 Bytes
422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 d8a714e 422e708 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import gradio as gr
import pandas as pd
from pymongo import MongoClient
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime
import json
import re
class ConversationAnalysisUI:
"""Gradio UI for displaying conversation analysis results."""
def __init__(self):
# Use keshavchhaparia MongoDB instance (same as RAG system)
self.mongodb_uri = "mongodb+srv://keshavchhaparia:bUSBXeVCGWDyQhDG@saaslabs.awtivxf.mongodb.net/"
self.database_name = "second_brain_course"
self.collection_name = "test_intercom_data"
self.setup_mongodb()
self.setup_ui()
def setup_mongodb(self):
"""Initialize MongoDB connection."""
try:
self.client = MongoClient(self.mongodb_uri)
self.db = self.client[self.database_name]
self.collection = self.db[self.collection_name]
print(f"β
Connected to MongoDB: {self.database_name}.{self.collection_name}")
except Exception as e:
print(f"β MongoDB connection failed: {e}")
raise
def load_conversations(self,
quality_min: float = 0.0,
quality_max: float = 1.0,
sentiment: str = "All",
search_text: str = "",
limit: int = 100) -> pd.DataFrame:
"""Load and filter conversations."""
try:
# Build query
query = {
'conversation_analysis': {'$exists': True, '$ne': None},
'content_quality_score': {'$gte': quality_min, '$lte': quality_max}
}
# Add sentiment filter
if sentiment != "All":
query['conversation_analysis.aggregated_marketing_insights.quotes.sentiment'] = sentiment
# Add text search
if search_text:
query['$or'] = [
{'content': {'$regex': search_text, '$options': 'i'}},
{'conversation_analysis.aggregated_contextual_summary': {'$regex': search_text, '$options': 'i'}}
]
# Fetch documents
docs = list(self.collection.find(query).limit(limit))
# Convert to DataFrame
data = []
seen_conversation_ids = set()
for doc in docs:
conversation_id = doc.get('metadata', {}).get('properties', {}).get('conversation_id', 'N/A')
# Skip duplicates
if conversation_id in seen_conversation_ids:
continue
seen_conversation_ids.add(conversation_id)
analysis = doc.get('conversation_analysis', {})
insights = analysis.get('aggregated_marketing_insights', {})
quotes = insights.get('quotes', [])
# Extract primary sentiment
primary_sentiment = quotes[0].get('sentiment', 'Unknown') if quotes else 'Unknown'
# Format date
created_at = analysis.get('created_at', '')
if isinstance(created_at, str):
try:
# Parse and format date
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
formatted_date = dt.strftime('%b %d, %Y %H:%M')
except:
formatted_date = created_at
elif hasattr(created_at, 'strftime'):
formatted_date = created_at.strftime('%b %d, %Y %H:%M')
else:
formatted_date = str(created_at)
# Get full summary without truncation
full_summary = analysis.get('aggregated_contextual_summary', 'No summary available')
# Get a simple insights summary for the table
marketing_insights = analysis.get('aggregated_marketing_insights', {})
insights_count = 0
if isinstance(marketing_insights, dict):
quotes_count = len(marketing_insights.get('quotes', []))
findings_count = len(marketing_insights.get('key_findings', []))
insights_count = quotes_count + findings_count
insights_text = f"{insights_count} insights available" if insights_count > 0 else "No insights available"
data.append({
'conversation_id': conversation_id,
'quality_score': round(doc.get('content_quality_score', 0.0), 2),
'sentiment': primary_sentiment,
'summary': full_summary,
'insights': insights_text,
'date': formatted_date
})
return pd.DataFrame(data)
except Exception as e:
print(f"β Error loading conversations: {e}")
return pd.DataFrame()
def get_conversation_details(self, conversation_id: str) -> str:
"""Get detailed analysis for a specific conversation."""
try:
doc = self.collection.find_one({
'metadata.properties.conversation_id': conversation_id,
'conversation_analysis': {'$exists': True}
})
if not doc:
return "<p>β Conversation not found</p>"
analysis = doc.get('conversation_analysis', {})
insights = analysis.get('aggregated_marketing_insights', {})
# Format the HTML content
html_content = f"""
<div class="conversation-details" style="background-color: white; color: #333; padding: 20px;">
<h3 style="color: #333; background-color: white;">π Conversation Analysis: {conversation_id}</h3>
<div class="section" style="background-color: white; color: #333; border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; margin: 20px 0;">
<h4 style="color: #333; background-color: white;">π Summary (Contextual Summary)</h4>
<div class="content-box" style="background-color: #f8f9fa; color: #333; padding: 15px; border-radius: 5px; border: 1px solid #dee2e6; margin: 10px 0;">
<p style="color: #333; background-color: transparent;">{analysis.get('aggregated_contextual_summary', 'No summary available')}</p>
</div>
</div>
<div class="section" style="background-color: white; color: #333; border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; margin: 20px 0;">
<h4 style="color: #333; background-color: white;">π‘ Insights</h4>
"""
# Add quotes
quotes = insights.get('quotes', [])
if quotes:
html_content += "<h5 style='color: #333; background-color: white;'>π Key Quotes:</h5><ul style='color: #333; background-color: white;'>"
for i, quote in enumerate(quotes, 1):
sentiment_class = f"sentiment-{quote.get('sentiment', 'neutral').lower()}"
html_content += f"""
<li style='color: #333; background-color: white;'>
<div class="quote-item" style='background-color: #f8f9fa; color: #333; padding: 10px; border-radius: 5px; border-left: 4px solid #007bff; margin: 10px 0;'>
<p style='color: #333; background-color: transparent;'><strong>Quote {i}:</strong> "{quote.get('quote', '')}"</p>
<p style='color: #333; background-color: transparent;'><strong>Context:</strong> {quote.get('context', '')}</p>
<p style='color: #333; background-color: transparent;'><strong>Sentiment:</strong> <span class="{sentiment_class}">{quote.get('sentiment', 'Unknown')}</span></p>
</div>
</li>
"""
html_content += "</ul>"
# Add key findings
findings = insights.get('key_findings', [])
if findings:
html_content += "<h5 style='color: #333; background-color: white;'>π Key Findings:</h5><ul style='color: #333; background-color: white;'>"
for i, finding in enumerate(findings, 1):
impact_class = f"impact-{finding.get('impact', 'medium').lower()}"
html_content += f"""
<li style='color: #333; background-color: white;'>
<div class="finding-item" style='background-color: #f8f9fa; color: #333; padding: 10px; border-radius: 5px; border-left: 4px solid #007bff; margin: 10px 0;'>
<p style='color: #333; background-color: transparent;'><strong>Finding {i}:</strong> {finding.get('finding', '')}</p>
<p style='color: #333; background-color: transparent;'><strong>Evidence:</strong> {finding.get('evidence', '')}</p>
<p style='color: #333; background-color: transparent;'><strong>Impact:</strong> <span class="{impact_class}">{finding.get('impact', 'Unknown')}</span></p>
</div>
</li>
"""
html_content += "</ul>"
# Add follow-up email
follow_up_email = analysis.get('follow_up_email', '')
if follow_up_email:
html_content += f"""
<div class="section" style="background-color: white; color: #333; border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; margin: 20px 0;">
<h4 style="color: #333; background-color: white;">π§ Follow-up Email</h4>
<div class="content-box" style="background-color: #f8f9fa; color: #333; padding: 15px; border-radius: 5px; border: 1px solid #dee2e6; margin: 10px 0;">
<pre style="color: #333; background-color: transparent; white-space: pre-wrap; font-family: monospace;">{follow_up_email}</pre>
</div>
</div>
"""
html_content += "</div>"
return html_content
except Exception as e:
return f"<p>β Error loading conversation details: {e}</p>"
def setup_ui(self):
"""Setup the Gradio interface."""
with gr.Blocks(
title="Conversation Analysis Dashboard",
theme=gr.themes.Soft(),
css="""
.conversation-details {
max-width: 100%;
padding: 20px;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
background-color: white;
color: #333;
}
.section {
margin: 20px 0;
padding: 15px;
border: 1px solid #e0e0e0;
border-radius: 8px;
background-color: #ffffff;
color: #333;
}
.content-box {
background-color: #f8f9fa;
padding: 15px;
border-radius: 5px;
border: 1px solid #dee2e6;
margin: 10px 0;
color: #333;
}
.quote-item, .finding-item {
margin: 10px 0;
padding: 10px;
background-color: #f8f9fa;
border-radius: 5px;
border-left: 4px solid #007bff;
color: #333;
}
.sentiment-positive {
background-color: #d4edda;
color: #155724;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.sentiment-negative {
background-color: #f8d7da;
color: #721c24;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.sentiment-neutral {
background-color: #d1ecf1;
color: #0c5460;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.sentiment-confused {
background-color: #fff3cd;
color: #856404;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.impact-high {
background-color: #f8d7da;
color: #721c24;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.impact-medium {
background-color: #fff3cd;
color: #856404;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.impact-low {
background-color: #d4edda;
color: #155724;
padding: 2px 8px;
border-radius: 4px;
font-weight: bold;
display: inline-block;
}
.quality-high { color: #28a745; font-weight: bold; }
.quality-medium { color: #ffc107; font-weight: bold; }
.quality-low { color: #dc3545; font-weight: bold; }
"""
) as self.interface:
gr.Markdown("# π― Conversation Analysis Dashboard")
gr.Markdown("Analyze customer conversations with AI-powered insights, summaries, and follow-up emails.")
# Filters
with gr.Row():
with gr.Column(scale=2):
quality_range = gr.Slider(
minimum=0.0, maximum=1.0, value=[0.0, 1.0],
label="Quality Score Range", step=0.01
)
with gr.Column(scale=1):
sentiment_filter = gr.Dropdown(
choices=["All", "Positive", "Negative", "Neutral", "Confused"],
value="All", label="Sentiment Filter"
)
with gr.Column(scale=1):
search_text = gr.Textbox(
placeholder="Search conversations...", label="Search"
)
with gr.Column(scale=1):
refresh_btn = gr.Button("π Refresh", variant="primary")
# Main table
with gr.Row():
conversations_df = gr.Dataframe(
headers=["Conversation ID", "Quality", "Sentiment", "Summary", "Insights Count", "Date"],
datatype=["str", "number", "str", "str", "str", "str"],
interactive=False,
label="Conversations",
wrap=True, # Enable text wrapping
max_height=600 # Set max height for scrolling
)
# Detail view
with gr.Row():
with gr.Column():
detail_view = gr.HTML(
value="<p>Select a conversation from the table above to view detailed analysis</p>",
label="Conversation Details"
)
# Event handlers
def refresh_data(quality_range, sentiment, search):
if isinstance(quality_range, (list, tuple)) and len(quality_range) == 2:
quality_min, quality_max = quality_range
else:
quality_min, quality_max = 0.0, 1.0
df = self.load_conversations(quality_min, quality_max, sentiment, search, limit=1000)
return df
def on_table_select(evt: gr.SelectData):
if evt.index[0] is not None:
try:
# Get the conversation ID from the selected row
# We need to get the current dataframe from the table
current_df = self.load_conversations()
if not current_df.empty and evt.index[0] < len(current_df):
conversation_id = current_df.iloc[evt.index[0]]['conversation_id']
return self.get_conversation_details(conversation_id)
else:
return "<p>Please refresh the data first</p>"
except Exception as e:
return f"<p>Error: {e}</p>"
return "<p>Please select a conversation from the table</p>"
refresh_btn.click(
fn=refresh_data,
inputs=[quality_range, sentiment_filter, search_text],
outputs=[conversations_df]
)
conversations_df.select(
fn=on_table_select,
outputs=[detail_view]
)
# Load initial data when the page loads
def load_initial_data():
return self.load_conversations(limit=1000) # Load more conversations
# Set initial data using the interface's load event
self.interface.load(load_initial_data, outputs=[conversations_df])
def launch(self, **kwargs):
"""Launch the Gradio interface."""
self.interface.launch(**kwargs)
|