File size: 1,986 Bytes
837d0b8
0d65b08
422e708
fbeb0ab
837d0b8
 
fbeb0ab
0d65b08
837d0b8
b27eb78
422e708
837d0b8
 
422e708
b27eb78
422e708
b27eb78
 
 
422e708
 
 
 
 
b27eb78
422e708
b27eb78
422e708
 
 
 
 
 
 
b27eb78
422e708
b27eb78
422e708
 
 
 
b27eb78
422e708
b27eb78
422e708
 
 
b27eb78
422e708
b27eb78
422e708
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
title: ContextDB 🀝 Justcall
emoji: 🎯
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.47.0
app_file: app.py
pinned: false
license: mit
short_description: AI-powered conversation analysis with insights and summaries
---

# 🎯 Conversation Analysis Dashboard

An AI-powered dashboard for analyzing customer conversations with intelligent insights, summaries, and follow-up email generation.

## Features

- **πŸ“Š Conversation Analysis**: View and analyze customer conversations with quality scores and sentiment analysis
- **πŸ’‘ AI Insights**: Get marketing insights and key findings from conversations
- **πŸ“§ Follow-up Emails**: Generate contextual follow-up emails based on conversation analysis
- **πŸ” Smart Filtering**: Filter conversations by quality score, sentiment, and search terms
- **πŸ“ˆ Real-time Updates**: Dynamic table updates with conversation details

## How to Use

1. **View Conversations**: Browse through analyzed conversations in the main table
2. **Filter Data**: Use the quality score slider, sentiment dropdown, and search box to filter conversations
3. **View Details**: Click on any conversation row to see detailed analysis including:
   - Contextual summary
   - Marketing insights with quotes and sentiment
   - Generated follow-up email
4. **Refresh Data**: Use the refresh button to reload the latest conversation data

## Technology Stack

- **Frontend**: Gradio for interactive UI
- **Backend**: Python with MongoDB for data storage
- **AI**: OpenAI GPT models for conversation analysis
- **Database**: MongoDB Atlas for conversation and RAG data storage

## Data Sources

The dashboard analyzes conversations from MongoDB collections:
- `test_intercom_data`: Main conversation data with analysis results
- `rag_intercom`: RAG index for semantic search and context retrieval

## Getting Started

The app will automatically connect to the configured MongoDB instance and load conversation data. No additional setup required!