File size: 21,277 Bytes
a697e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#!/usr/bin/env python3
"""
User Interaction Analysis Dashboard

A comprehensive UI for viewing and analyzing user interactions across
Intercom chats and JustCall meetings with priority-based filtering.
"""

import gradio as gr
from pymongo import MongoClient
from typing import List, Dict, Any, Tuple, Optional
import pandas as pd
from loguru import logger

# MongoDB Configuration
MONGODB_URI = "mongodb+srv://contextdb:HOqIgSH01CoEiMb1@cluster0.d9cmff.mongodb.net/"
DATABASE_NAME = "second_brain_course"
COLLECTION_NAME = "user_interaction_analyses"


class UserInteractionDashboard:
    """Dashboard for user interaction analyses."""
    
    def __init__(self):
        """Initialize dashboard with MongoDB connection."""
        self.client = MongoClient(MONGODB_URI)
        self.db = self.client[DATABASE_NAME]
        self.collection = self.db[COLLECTION_NAME]
        logger.info(f"Connected to MongoDB: {DATABASE_NAME}.{COLLECTION_NAME}")
    
    def get_summary_stats(self) -> Tuple[int, int, int, int, int, int]:
        """Get summary statistics for the dashboard."""
        
        total_users = self.collection.count_documents({})
        
        # Count by priority
        high_priority = self.collection.count_documents({"priority_level": "high"})
        medium_priority = self.collection.count_documents({"priority_level": "medium"})
        low_priority = self.collection.count_documents({"priority_level": "low"})
        
        # Aggregate total conversations and meetings
        pipeline = [
            {
                "$group": {
                    "_id": None,
                    "total_conversations": {"$sum": "$total_conversations"},
                    "total_meetings": {"$sum": "$total_meetings"}
                }
            }
        ]
        
        agg_result = list(self.collection.aggregate(pipeline))
        total_conversations = agg_result[0]["total_conversations"] if agg_result else 0
        total_meetings = agg_result[0]["total_meetings"] if agg_result else 0
        
        return (
            total_users,
            total_conversations,
            total_meetings,
            high_priority,
            medium_priority,
            low_priority
        )
    
    def get_users_data(self, priority_filter: Optional[str] = None) -> pd.DataFrame:
        """Get user data for table display with optional priority filter."""
        
        # Build query
        query = {}
        if priority_filter and priority_filter != "All":
            query["priority_level"] = priority_filter.lower()
        
        # Fetch documents
        users = list(self.collection.find(query))
        
        if not users:
            return pd.DataFrame(columns=[
                "User ID", "Conversations", "Meetings", 
                "Conv Key Findings", "Meeting Key Findings", "Priority"
            ])
        
        # Transform to table format
        table_data = []
        for user in users:
            user_id = user.get("user_id", "")
            
            # Get conversation IDs
            conv_ids = user.get("conversation_ids", [])
            conv_ids_str = ", ".join(conv_ids[:3])  # Show first 3
            if len(conv_ids) > 3:
                conv_ids_str += f" (+{len(conv_ids) - 3} more)"
            
            # Get meeting IDs
            meeting_ids = user.get("meeting_ids", [])
            meeting_ids_str = ", ".join(meeting_ids[:3])  # Show first 3
            if len(meeting_ids) > 3:
                meeting_ids_str += f" (+{len(meeting_ids) - 3} more)"
            
            # Get key findings from conversation level
            conv_insights = user.get("conversation_level_insights", {})
            conv_findings = conv_insights.get("aggregated_marketing_insights", {}).get("key_findings", [])
            conv_findings_str = f"{len(conv_findings)} findings"
            
            # Get key findings from meeting level
            meeting_insights = user.get("meeting_level_insights", {})
            meeting_findings = meeting_insights.get("aggregated_marketing_insights", {}).get("key_findings", [])
            meeting_findings_str = f"{len(meeting_findings)} findings"
            
            priority = user.get("priority_level", "unknown").upper()
            
            table_data.append({
                "User ID": user_id,
                "Conversations": conv_ids_str,
                "Meetings": meeting_ids_str,
                "Conv Key Findings": conv_findings_str,
                "Meeting Key Findings": meeting_findings_str,
                "Priority": priority,
                "_raw": user  # Store raw data for detail view
            })
        
        df = pd.DataFrame(table_data)
        return df
    
    def get_user_detail(self, df: pd.DataFrame, evt: gr.SelectData) -> str:
        """Get detailed view of selected user."""
        
        if df is None or len(df) == 0:
            return "No user selected"
        
        try:
            selected_row = evt.index[0] if isinstance(evt.index, list) else evt.index
            user_data = df.iloc[selected_row]["_raw"]
            
            # Build detailed HTML view
            html = f"""
            <div style="font-family: Arial, sans-serif; padding: 20px;">
                <h2 style="color: #2563eb;">User Profile: {user_data.get('user_id', 'N/A')}</h2>
                <p><strong>Priority Level:</strong> <span style="color: {'#dc2626' if user_data.get('priority_level') == 'high' else '#f59e0b' if user_data.get('priority_level') == 'medium' else '#16a34a'}; font-weight: bold;">{user_data.get('priority_level', 'unknown').upper()}</span></p>
                <p><strong>Analysis Date:</strong> {user_data.get('analysis_timestamp', 'N/A')}</p>
                <hr style="margin: 20px 0;">
                
                <h3 style="color: #7c3aed;">πŸ“Š Overview</h3>
                <ul>
                    <li><strong>Total Conversations:</strong> {user_data.get('total_conversations', 0)}</li>
                    <li><strong>Total Meetings:</strong> {user_data.get('total_meetings', 0)}</li>
                    <li><strong>Conversation Chunks:</strong> {user_data.get('total_conversation_chunks', 0)}</li>
                    <li><strong>Meeting Chunks:</strong> {user_data.get('total_meeting_chunks', 0)}</li>
                </ul>
                
                <hr style="margin: 20px 0;">
                
                <h3 style="color: #0891b2;">πŸ’¬ Conversation Level Insights (Intercom)</h3>
            """
            
            # Conversation insights
            conv_insights = user_data.get("conversation_level_insights", {})
            conv_summary = conv_insights.get("conversation_summary", "No summary available")
            html += f"<p><strong>Summary:</strong> {conv_summary}</p>"
            
            # Conversation quotes
            conv_marketing = conv_insights.get("aggregated_marketing_insights", {})
            conv_quotes = conv_marketing.get("quotes", [])
            if conv_quotes:
                html += "<h4>Key Quotes:</h4><ul>"
                for quote in conv_quotes[:5]:  # Show first 5
                    html += f"""
                    <li>
                        <strong>"{quote.get('quote', '')}"</strong>
                        <br><em>Context:</em> {quote.get('context', '')}
                        <br><em>Sentiment:</em> {quote.get('sentiment', '')}
                    </li>
                    """
                html += "</ul>"
            
            # Conversation findings
            conv_findings = conv_marketing.get("key_findings", [])
            if conv_findings:
                html += "<h4>Key Findings:</h4><ul>"
                for finding in conv_findings[:5]:  # Show first 5
                    impact_color = "#dc2626" if finding.get("impact") == "high" else "#f59e0b" if finding.get("impact") == "medium" else "#16a34a"
                    html += f"""
                    <li>
                        <strong>{finding.get('finding', '')}</strong>
                        <br><em>Evidence:</em> {finding.get('evidence', '')}
                        <br><em>Impact:</em> <span style="color: {impact_color}; font-weight: bold;">{finding.get('impact', '').upper()}</span>
                    </li>
                    """
                html += "</ul>"
            
            html += "<hr style='margin: 20px 0;'>"
            
            # Meeting insights
            html += "<h3 style='color: #ea580c;'>πŸ“ž Meeting Level Insights (JustCall)</h3>"
            meeting_insights = user_data.get("meeting_level_insights", {})
            meeting_summary = meeting_insights.get("meeting_summary", "No summary available")
            html += f"<p><strong>Summary:</strong> {meeting_summary}</p>"
            
            # Meeting quotes
            meeting_marketing = meeting_insights.get("aggregated_marketing_insights", {})
            meeting_quotes = meeting_marketing.get("quotes", [])
            if meeting_quotes:
                html += "<h4>Key Quotes:</h4><ul>"
                for quote in meeting_quotes[:5]:  # Show first 5
                    html += f"""
                    <li>
                        <strong>"{quote.get('quote', '')}"</strong>
                        <br><em>Context:</em> {quote.get('context', '')}
                        <br><em>Sentiment:</em> {quote.get('sentiment', '')}
                    </li>
                    """
                html += "</ul>"
            
            # Meeting findings
            meeting_findings = meeting_marketing.get("key_findings", [])
            if meeting_findings:
                html += "<h4>Key Findings:</h4><ul>"
                for finding in meeting_findings[:5]:  # Show first 5
                    impact_color = "#dc2626" if finding.get("impact") == "high" else "#f59e0b" if finding.get("impact") == "medium" else "#16a34a"
                    html += f"""
                    <li>
                        <strong>{finding.get('finding', '')}</strong>
                        <br><em>Evidence:</em> {finding.get('evidence', '')}
                        <br><em>Impact:</em> <span style="color: {impact_color}; font-weight: bold;">{finding.get('impact', '').upper()}</span>
                    </li>
                    """
                html += "</ul>"
            
            html += "<hr style='margin: 20px 0;'>"
            
            # Unified insights
            html += "<h3 style='color: #059669;'>🎯 Unified Insights</h3>"
            unified_summary = user_data.get("unified_insights", {}).get("unified_summary", "No unified summary available")
            html += f"<p><strong>Summary:</strong> {unified_summary}</p>"
            
            # User journey
            user_journey = user_data.get("user_journey_summary", "No journey summary available")
            html += f"<h4>User Journey:</h4><p>{user_journey}</p>"
            
            # Cross-interaction patterns
            patterns = user_data.get("cross_interaction_patterns", [])
            if patterns:
                html += "<h4>Cross-Interaction Patterns:</h4><ul>"
                for pattern in patterns:
                    html += f"<li>{pattern}</li>"
                html += "</ul>"
            
            # Follow-up recommendations
            recommendations = user_data.get("unified_follow_up_recommendations", "No recommendations available")
            html += f"<h4>Follow-up Recommendations:</h4><p style='background: #f3f4f6; padding: 15px; border-radius: 5px;'>{recommendations}</p>"
            
            html += "</div>"
            
            return html
            
        except Exception as e:
            logger.error(f"Error getting user detail: {e}")
            return f"Error loading user details: {str(e)}"
    
    def filter_by_priority(self, priority: str) -> Tuple[pd.DataFrame, str]:
        """Filter users by priority level."""
        
        df = self.get_users_data(priority_filter=priority)
        
        # Remove the _raw column for display
        display_df = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
        
        return display_df, f"Showing {len(df)} users with {priority} priority"
    
    def search_table(self, df: pd.DataFrame, search_term: str) -> pd.DataFrame:
        """Search across all columns in the table."""
        
        if not search_term or df is None or len(df) == 0:
            return df
        
        # Search across all string columns
        mask = df.astype(str).apply(
            lambda row: row.str.contains(search_term, case=False, na=False).any(),
            axis=1
        )
        
        return df[mask]


def create_dashboard():
    """Create the Gradio dashboard."""
    
    dashboard = UserInteractionDashboard()
    
    # Get initial stats
    total_users, total_convs, total_meetings, high_count, medium_count, low_count = dashboard.get_summary_stats()
    
    # Custom CSS for better styling
    custom_css = """
    .priority-btn {
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 15px 30px !important;
        border-radius: 8px !important;
    }
    .stats-box {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        padding: 20px;
        border-radius: 10px;
        color: white;
        text-align: center;
    }
    """
    
    with gr.Blocks(css=custom_css, title="User Interaction Analysis Dashboard") as demo:
        
        # Header
        gr.Markdown("# 🎯 User Interaction Analysis Dashboard")
        gr.Markdown("*Analyzing user interactions across Intercom chats and JustCall meetings*")
        
        # ============================================================
        # SECTION 1: Summary Statistics and Priority Filters
        # ============================================================
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(f"""
                <div class="stats-box">
                    <h2>{total_users}</h2>
                    <p>Total Users Analyzed</p>
                </div>
                """)
            
            with gr.Column(scale=1):
                gr.Markdown(f"""
                <div class="stats-box">
                    <h2>{total_convs}</h2>
                    <p>Intercom Conversations</p>
                </div>
                """)
            
            with gr.Column(scale=1):
                gr.Markdown(f"""
                <div class="stats-box">
                    <h2>{total_meetings}</h2>
                    <p>JustCall Meetings</p>
                </div>
                """)
        
        gr.Markdown("---")
        
        # Priority Filter Buttons
        gr.Markdown("### 🎚️ Filter by Priority Level")
        with gr.Row():
            high_btn = gr.Button(
                f"πŸ”΄ High Priority ({high_count})",
                elem_classes=["priority-btn"],
                variant="primary",
                scale=1
            )
            medium_btn = gr.Button(
                f"🟑 Medium Priority ({medium_count})",
                elem_classes=["priority-btn"],
                variant="secondary",
                scale=1
            )
            low_btn = gr.Button(
                f"🟒 Low Priority ({low_count})",
                elem_classes=["priority-btn"],
                variant="secondary",
                scale=1
            )
            all_btn = gr.Button(
                f"βšͺ All Users ({total_users})",
                elem_classes=["priority-btn"],
                variant="secondary",
                scale=1
            )
        
        filter_status = gr.Textbox(
            label="Filter Status",
            value=f"Showing all {total_users} users",
            interactive=False
        )
        
        gr.Markdown("---")
        
        # ============================================================
        # SECTION 2: User Data Table with Search
        # ============================================================
        gr.Markdown("### πŸ“Š User Interaction Data")
        
        search_box = gr.Textbox(
            label="πŸ” Search across all columns",
            placeholder="Search by User ID, Conversation ID, Meeting ID, findings...",
            scale=1
        )
        
        # Get initial data
        initial_df = dashboard.get_users_data()
        display_df = initial_df.drop(columns=["_raw"]) if "_raw" in initial_df.columns else initial_df
        
        user_table = gr.Dataframe(
            value=display_df,
            label="User Interactions",
            interactive=False,
            wrap=True
        )
        
        # Hidden state to store full dataframe with _raw data
        full_data_state = gr.State(value=initial_df)
        filtered_data_state = gr.State(value=initial_df)
        
        gr.Markdown("---")
        
        # ============================================================
        # SECTION 3: Detailed User View
        # ============================================================
        gr.Markdown("### πŸ‘€ User Details")
        gr.Markdown("*Click on any row in the table above to see detailed analysis*")
        
        user_detail = gr.HTML(
            value="<p style='text-align: center; color: #6b7280; padding: 40px;'>Select a user from the table above to view detailed insights</p>"
        )
        
        # ============================================================
        # Event Handlers
        # ============================================================
        
        def filter_high():
            df = dashboard.get_users_data(priority_filter="High")
            display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
            return display, df, df, f"Showing {len(df)} HIGH priority users"
        
        def filter_medium():
            df = dashboard.get_users_data(priority_filter="Medium")
            display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
            return display, df, df, f"Showing {len(df)} MEDIUM priority users"
        
        def filter_low():
            df = dashboard.get_users_data(priority_filter="Low")
            display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
            return display, df, df, f"Showing {len(df)} LOW priority users"
        
        def filter_all():
            df = dashboard.get_users_data(priority_filter=None)
            display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
            return display, df, df, f"Showing all {len(df)} users"
        
        def search_users(search_term: str, current_filtered_df: pd.DataFrame):
            """Search within currently filtered data."""
            if not search_term:
                # Return the current filtered data
                display = current_filtered_df.drop(columns=["_raw"]) if "_raw" in current_filtered_df.columns else current_filtered_df
                return display
            
            # Search in the filtered data
            if current_filtered_df is None or len(current_filtered_df) == 0:
                return pd.DataFrame()
            
            # Create a copy for searching
            search_df = current_filtered_df.copy()
            
            # Search across all visible columns (excluding _raw)
            visible_cols = [col for col in search_df.columns if col != "_raw"]
            mask = search_df[visible_cols].astype(str).apply(
                lambda row: row.str.contains(search_term, case=False, na=False).any(),
                axis=1
            )
            
            result_df = search_df[mask]
            display = result_df.drop(columns=["_raw"]) if "_raw" in result_df.columns else result_df
            return display
        
        def show_detail(evt: gr.SelectData, full_data: pd.DataFrame):
            """Show detailed view when row is selected."""
            return dashboard.get_user_detail(full_data, evt)
        
        # Wire up event handlers
        high_btn.click(
            fn=filter_high,
            outputs=[user_table, filtered_data_state, full_data_state, filter_status]
        )
        
        medium_btn.click(
            fn=filter_medium,
            outputs=[user_table, filtered_data_state, full_data_state, filter_status]
        )
        
        low_btn.click(
            fn=filter_low,
            outputs=[user_table, filtered_data_state, full_data_state, filter_status]
        )
        
        all_btn.click(
            fn=filter_all,
            outputs=[user_table, filtered_data_state, full_data_state, filter_status]
        )
        
        search_box.change(
            fn=search_users,
            inputs=[search_box, filtered_data_state],
            outputs=[user_table]
        )
        
        user_table.select(
            fn=show_detail,
            inputs=[full_data_state],
            outputs=[user_detail]
        )
    
    return demo


if __name__ == "__main__":
    logger.info("Starting User Interaction Analysis Dashboard...")
    demo = create_dashboard()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7861,
        share=False
    )