Spaces:
Sleeping
Sleeping
File size: 21,277 Bytes
a697e1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
#!/usr/bin/env python3
"""
User Interaction Analysis Dashboard
A comprehensive UI for viewing and analyzing user interactions across
Intercom chats and JustCall meetings with priority-based filtering.
"""
import gradio as gr
from pymongo import MongoClient
from typing import List, Dict, Any, Tuple, Optional
import pandas as pd
from loguru import logger
# MongoDB Configuration
MONGODB_URI = "mongodb+srv://contextdb:HOqIgSH01CoEiMb1@cluster0.d9cmff.mongodb.net/"
DATABASE_NAME = "second_brain_course"
COLLECTION_NAME = "user_interaction_analyses"
class UserInteractionDashboard:
"""Dashboard for user interaction analyses."""
def __init__(self):
"""Initialize dashboard with MongoDB connection."""
self.client = MongoClient(MONGODB_URI)
self.db = self.client[DATABASE_NAME]
self.collection = self.db[COLLECTION_NAME]
logger.info(f"Connected to MongoDB: {DATABASE_NAME}.{COLLECTION_NAME}")
def get_summary_stats(self) -> Tuple[int, int, int, int, int, int]:
"""Get summary statistics for the dashboard."""
total_users = self.collection.count_documents({})
# Count by priority
high_priority = self.collection.count_documents({"priority_level": "high"})
medium_priority = self.collection.count_documents({"priority_level": "medium"})
low_priority = self.collection.count_documents({"priority_level": "low"})
# Aggregate total conversations and meetings
pipeline = [
{
"$group": {
"_id": None,
"total_conversations": {"$sum": "$total_conversations"},
"total_meetings": {"$sum": "$total_meetings"}
}
}
]
agg_result = list(self.collection.aggregate(pipeline))
total_conversations = agg_result[0]["total_conversations"] if agg_result else 0
total_meetings = agg_result[0]["total_meetings"] if agg_result else 0
return (
total_users,
total_conversations,
total_meetings,
high_priority,
medium_priority,
low_priority
)
def get_users_data(self, priority_filter: Optional[str] = None) -> pd.DataFrame:
"""Get user data for table display with optional priority filter."""
# Build query
query = {}
if priority_filter and priority_filter != "All":
query["priority_level"] = priority_filter.lower()
# Fetch documents
users = list(self.collection.find(query))
if not users:
return pd.DataFrame(columns=[
"User ID", "Conversations", "Meetings",
"Conv Key Findings", "Meeting Key Findings", "Priority"
])
# Transform to table format
table_data = []
for user in users:
user_id = user.get("user_id", "")
# Get conversation IDs
conv_ids = user.get("conversation_ids", [])
conv_ids_str = ", ".join(conv_ids[:3]) # Show first 3
if len(conv_ids) > 3:
conv_ids_str += f" (+{len(conv_ids) - 3} more)"
# Get meeting IDs
meeting_ids = user.get("meeting_ids", [])
meeting_ids_str = ", ".join(meeting_ids[:3]) # Show first 3
if len(meeting_ids) > 3:
meeting_ids_str += f" (+{len(meeting_ids) - 3} more)"
# Get key findings from conversation level
conv_insights = user.get("conversation_level_insights", {})
conv_findings = conv_insights.get("aggregated_marketing_insights", {}).get("key_findings", [])
conv_findings_str = f"{len(conv_findings)} findings"
# Get key findings from meeting level
meeting_insights = user.get("meeting_level_insights", {})
meeting_findings = meeting_insights.get("aggregated_marketing_insights", {}).get("key_findings", [])
meeting_findings_str = f"{len(meeting_findings)} findings"
priority = user.get("priority_level", "unknown").upper()
table_data.append({
"User ID": user_id,
"Conversations": conv_ids_str,
"Meetings": meeting_ids_str,
"Conv Key Findings": conv_findings_str,
"Meeting Key Findings": meeting_findings_str,
"Priority": priority,
"_raw": user # Store raw data for detail view
})
df = pd.DataFrame(table_data)
return df
def get_user_detail(self, df: pd.DataFrame, evt: gr.SelectData) -> str:
"""Get detailed view of selected user."""
if df is None or len(df) == 0:
return "No user selected"
try:
selected_row = evt.index[0] if isinstance(evt.index, list) else evt.index
user_data = df.iloc[selected_row]["_raw"]
# Build detailed HTML view
html = f"""
<div style="font-family: Arial, sans-serif; padding: 20px;">
<h2 style="color: #2563eb;">User Profile: {user_data.get('user_id', 'N/A')}</h2>
<p><strong>Priority Level:</strong> <span style="color: {'#dc2626' if user_data.get('priority_level') == 'high' else '#f59e0b' if user_data.get('priority_level') == 'medium' else '#16a34a'}; font-weight: bold;">{user_data.get('priority_level', 'unknown').upper()}</span></p>
<p><strong>Analysis Date:</strong> {user_data.get('analysis_timestamp', 'N/A')}</p>
<hr style="margin: 20px 0;">
<h3 style="color: #7c3aed;">π Overview</h3>
<ul>
<li><strong>Total Conversations:</strong> {user_data.get('total_conversations', 0)}</li>
<li><strong>Total Meetings:</strong> {user_data.get('total_meetings', 0)}</li>
<li><strong>Conversation Chunks:</strong> {user_data.get('total_conversation_chunks', 0)}</li>
<li><strong>Meeting Chunks:</strong> {user_data.get('total_meeting_chunks', 0)}</li>
</ul>
<hr style="margin: 20px 0;">
<h3 style="color: #0891b2;">π¬ Conversation Level Insights (Intercom)</h3>
"""
# Conversation insights
conv_insights = user_data.get("conversation_level_insights", {})
conv_summary = conv_insights.get("conversation_summary", "No summary available")
html += f"<p><strong>Summary:</strong> {conv_summary}</p>"
# Conversation quotes
conv_marketing = conv_insights.get("aggregated_marketing_insights", {})
conv_quotes = conv_marketing.get("quotes", [])
if conv_quotes:
html += "<h4>Key Quotes:</h4><ul>"
for quote in conv_quotes[:5]: # Show first 5
html += f"""
<li>
<strong>"{quote.get('quote', '')}"</strong>
<br><em>Context:</em> {quote.get('context', '')}
<br><em>Sentiment:</em> {quote.get('sentiment', '')}
</li>
"""
html += "</ul>"
# Conversation findings
conv_findings = conv_marketing.get("key_findings", [])
if conv_findings:
html += "<h4>Key Findings:</h4><ul>"
for finding in conv_findings[:5]: # Show first 5
impact_color = "#dc2626" if finding.get("impact") == "high" else "#f59e0b" if finding.get("impact") == "medium" else "#16a34a"
html += f"""
<li>
<strong>{finding.get('finding', '')}</strong>
<br><em>Evidence:</em> {finding.get('evidence', '')}
<br><em>Impact:</em> <span style="color: {impact_color}; font-weight: bold;">{finding.get('impact', '').upper()}</span>
</li>
"""
html += "</ul>"
html += "<hr style='margin: 20px 0;'>"
# Meeting insights
html += "<h3 style='color: #ea580c;'>π Meeting Level Insights (JustCall)</h3>"
meeting_insights = user_data.get("meeting_level_insights", {})
meeting_summary = meeting_insights.get("meeting_summary", "No summary available")
html += f"<p><strong>Summary:</strong> {meeting_summary}</p>"
# Meeting quotes
meeting_marketing = meeting_insights.get("aggregated_marketing_insights", {})
meeting_quotes = meeting_marketing.get("quotes", [])
if meeting_quotes:
html += "<h4>Key Quotes:</h4><ul>"
for quote in meeting_quotes[:5]: # Show first 5
html += f"""
<li>
<strong>"{quote.get('quote', '')}"</strong>
<br><em>Context:</em> {quote.get('context', '')}
<br><em>Sentiment:</em> {quote.get('sentiment', '')}
</li>
"""
html += "</ul>"
# Meeting findings
meeting_findings = meeting_marketing.get("key_findings", [])
if meeting_findings:
html += "<h4>Key Findings:</h4><ul>"
for finding in meeting_findings[:5]: # Show first 5
impact_color = "#dc2626" if finding.get("impact") == "high" else "#f59e0b" if finding.get("impact") == "medium" else "#16a34a"
html += f"""
<li>
<strong>{finding.get('finding', '')}</strong>
<br><em>Evidence:</em> {finding.get('evidence', '')}
<br><em>Impact:</em> <span style="color: {impact_color}; font-weight: bold;">{finding.get('impact', '').upper()}</span>
</li>
"""
html += "</ul>"
html += "<hr style='margin: 20px 0;'>"
# Unified insights
html += "<h3 style='color: #059669;'>π― Unified Insights</h3>"
unified_summary = user_data.get("unified_insights", {}).get("unified_summary", "No unified summary available")
html += f"<p><strong>Summary:</strong> {unified_summary}</p>"
# User journey
user_journey = user_data.get("user_journey_summary", "No journey summary available")
html += f"<h4>User Journey:</h4><p>{user_journey}</p>"
# Cross-interaction patterns
patterns = user_data.get("cross_interaction_patterns", [])
if patterns:
html += "<h4>Cross-Interaction Patterns:</h4><ul>"
for pattern in patterns:
html += f"<li>{pattern}</li>"
html += "</ul>"
# Follow-up recommendations
recommendations = user_data.get("unified_follow_up_recommendations", "No recommendations available")
html += f"<h4>Follow-up Recommendations:</h4><p style='background: #f3f4f6; padding: 15px; border-radius: 5px;'>{recommendations}</p>"
html += "</div>"
return html
except Exception as e:
logger.error(f"Error getting user detail: {e}")
return f"Error loading user details: {str(e)}"
def filter_by_priority(self, priority: str) -> Tuple[pd.DataFrame, str]:
"""Filter users by priority level."""
df = self.get_users_data(priority_filter=priority)
# Remove the _raw column for display
display_df = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
return display_df, f"Showing {len(df)} users with {priority} priority"
def search_table(self, df: pd.DataFrame, search_term: str) -> pd.DataFrame:
"""Search across all columns in the table."""
if not search_term or df is None or len(df) == 0:
return df
# Search across all string columns
mask = df.astype(str).apply(
lambda row: row.str.contains(search_term, case=False, na=False).any(),
axis=1
)
return df[mask]
def create_dashboard():
"""Create the Gradio dashboard."""
dashboard = UserInteractionDashboard()
# Get initial stats
total_users, total_convs, total_meetings, high_count, medium_count, low_count = dashboard.get_summary_stats()
# Custom CSS for better styling
custom_css = """
.priority-btn {
font-size: 18px !important;
font-weight: bold !important;
padding: 15px 30px !important;
border-radius: 8px !important;
}
.stats-box {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 10px;
color: white;
text-align: center;
}
"""
with gr.Blocks(css=custom_css, title="User Interaction Analysis Dashboard") as demo:
# Header
gr.Markdown("# π― User Interaction Analysis Dashboard")
gr.Markdown("*Analyzing user interactions across Intercom chats and JustCall meetings*")
# ============================================================
# SECTION 1: Summary Statistics and Priority Filters
# ============================================================
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"""
<div class="stats-box">
<h2>{total_users}</h2>
<p>Total Users Analyzed</p>
</div>
""")
with gr.Column(scale=1):
gr.Markdown(f"""
<div class="stats-box">
<h2>{total_convs}</h2>
<p>Intercom Conversations</p>
</div>
""")
with gr.Column(scale=1):
gr.Markdown(f"""
<div class="stats-box">
<h2>{total_meetings}</h2>
<p>JustCall Meetings</p>
</div>
""")
gr.Markdown("---")
# Priority Filter Buttons
gr.Markdown("### ποΈ Filter by Priority Level")
with gr.Row():
high_btn = gr.Button(
f"π΄ High Priority ({high_count})",
elem_classes=["priority-btn"],
variant="primary",
scale=1
)
medium_btn = gr.Button(
f"π‘ Medium Priority ({medium_count})",
elem_classes=["priority-btn"],
variant="secondary",
scale=1
)
low_btn = gr.Button(
f"π’ Low Priority ({low_count})",
elem_classes=["priority-btn"],
variant="secondary",
scale=1
)
all_btn = gr.Button(
f"βͺ All Users ({total_users})",
elem_classes=["priority-btn"],
variant="secondary",
scale=1
)
filter_status = gr.Textbox(
label="Filter Status",
value=f"Showing all {total_users} users",
interactive=False
)
gr.Markdown("---")
# ============================================================
# SECTION 2: User Data Table with Search
# ============================================================
gr.Markdown("### π User Interaction Data")
search_box = gr.Textbox(
label="π Search across all columns",
placeholder="Search by User ID, Conversation ID, Meeting ID, findings...",
scale=1
)
# Get initial data
initial_df = dashboard.get_users_data()
display_df = initial_df.drop(columns=["_raw"]) if "_raw" in initial_df.columns else initial_df
user_table = gr.Dataframe(
value=display_df,
label="User Interactions",
interactive=False,
wrap=True
)
# Hidden state to store full dataframe with _raw data
full_data_state = gr.State(value=initial_df)
filtered_data_state = gr.State(value=initial_df)
gr.Markdown("---")
# ============================================================
# SECTION 3: Detailed User View
# ============================================================
gr.Markdown("### π€ User Details")
gr.Markdown("*Click on any row in the table above to see detailed analysis*")
user_detail = gr.HTML(
value="<p style='text-align: center; color: #6b7280; padding: 40px;'>Select a user from the table above to view detailed insights</p>"
)
# ============================================================
# Event Handlers
# ============================================================
def filter_high():
df = dashboard.get_users_data(priority_filter="High")
display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
return display, df, df, f"Showing {len(df)} HIGH priority users"
def filter_medium():
df = dashboard.get_users_data(priority_filter="Medium")
display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
return display, df, df, f"Showing {len(df)} MEDIUM priority users"
def filter_low():
df = dashboard.get_users_data(priority_filter="Low")
display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
return display, df, df, f"Showing {len(df)} LOW priority users"
def filter_all():
df = dashboard.get_users_data(priority_filter=None)
display = df.drop(columns=["_raw"]) if "_raw" in df.columns else df
return display, df, df, f"Showing all {len(df)} users"
def search_users(search_term: str, current_filtered_df: pd.DataFrame):
"""Search within currently filtered data."""
if not search_term:
# Return the current filtered data
display = current_filtered_df.drop(columns=["_raw"]) if "_raw" in current_filtered_df.columns else current_filtered_df
return display
# Search in the filtered data
if current_filtered_df is None or len(current_filtered_df) == 0:
return pd.DataFrame()
# Create a copy for searching
search_df = current_filtered_df.copy()
# Search across all visible columns (excluding _raw)
visible_cols = [col for col in search_df.columns if col != "_raw"]
mask = search_df[visible_cols].astype(str).apply(
lambda row: row.str.contains(search_term, case=False, na=False).any(),
axis=1
)
result_df = search_df[mask]
display = result_df.drop(columns=["_raw"]) if "_raw" in result_df.columns else result_df
return display
def show_detail(evt: gr.SelectData, full_data: pd.DataFrame):
"""Show detailed view when row is selected."""
return dashboard.get_user_detail(full_data, evt)
# Wire up event handlers
high_btn.click(
fn=filter_high,
outputs=[user_table, filtered_data_state, full_data_state, filter_status]
)
medium_btn.click(
fn=filter_medium,
outputs=[user_table, filtered_data_state, full_data_state, filter_status]
)
low_btn.click(
fn=filter_low,
outputs=[user_table, filtered_data_state, full_data_state, filter_status]
)
all_btn.click(
fn=filter_all,
outputs=[user_table, filtered_data_state, full_data_state, filter_status]
)
search_box.change(
fn=search_users,
inputs=[search_box, filtered_data_state],
outputs=[user_table]
)
user_table.select(
fn=show_detail,
inputs=[full_data_state],
outputs=[user_detail]
)
return demo
if __name__ == "__main__":
logger.info("Starting User Interaction Analysis Dashboard...")
demo = create_dashboard()
demo.launch(
server_name="0.0.0.0",
server_port=7861,
share=False
)
|