Spaces:
Sleeping
Sleeping
Enhanced conversation analysis UI with customer details and migrated to Keshav MongoDB
Browse files- Consolidated customer info (user_id, region, country, team_size) into single column
- Updated MongoDB configuration to point to Keshav's instance
- Migrated test_conversation_documents and rag_conversations collections
- Enhanced conversation table with search and filtering capabilities
- Improved UI layout with collapsible sections for sources and tools
- Added conversation analysis pipeline integration
- Updated retriever configuration for conversation data
- .gradio/certificate.pem +31 -0
- app.py +1 -1
- config.py +3 -2
- compute_rag_vector_index_openai_contextual_simple.yaml → configs/compute_rag_vector_index_conversations.yaml +8 -8
- configs/compute_rag_vector_index_openai_contextual_reranked.yaml +12 -0
- configs/compute_rag_vector_index_openai_contextual_simple.yaml +2 -2
- conversation_analysis_app.py +0 -45
- correct_init.py +0 -9
- init_fixed.py +0 -9
- migrate_mongodb_data.py +0 -139
- pyproject.toml +1 -0
- src/second_brain_online/application/agents/tools/mongodb_retriever.py +4 -0
- src/second_brain_online/application/rag/retrievers.py +35 -6
- src/second_brain_online/application/ui/custom_gradio_ui.py +383 -13
- src/second_brain_online/config.py +3 -2
- temp_init.py +0 -9
- uv.lock +2 -0
- what_can_i_do.py +0 -60
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
app.py
CHANGED
|
@@ -20,7 +20,7 @@ from second_brain_online import opik_utils
|
|
| 20 |
def main():
|
| 21 |
"""Main function for Hugging Face Space deployment."""
|
| 22 |
# Set default values for HF Spaces
|
| 23 |
-
retriever_config_path = os.getenv("RETRIEVER_CONFIG_PATH", "configs/
|
| 24 |
|
| 25 |
print("🚀 Starting Second Brain AI Assistant...")
|
| 26 |
print(f"📁 Using retriever config: {retriever_config_path}")
|
|
|
|
| 20 |
def main():
|
| 21 |
"""Main function for Hugging Face Space deployment."""
|
| 22 |
# Set default values for HF Spaces
|
| 23 |
+
retriever_config_path = os.getenv("RETRIEVER_CONFIG_PATH", "configs/compute_rag_vector_index_conversations.yaml")
|
| 24 |
|
| 25 |
print("🚀 Starting Second Brain AI Assistant...")
|
| 26 |
print(f"📁 Using retriever config: {retriever_config_path}")
|
config.py
CHANGED
|
@@ -44,11 +44,12 @@ class Settings(BaseSettings):
|
|
| 44 |
description="Name of the MongoDB database.",
|
| 45 |
)
|
| 46 |
MONGODB_COLLECTION_NAME: str = Field(
|
| 47 |
-
default="
|
| 48 |
description="Name of the MongoDB collection for RAG documents.",
|
| 49 |
)
|
| 50 |
MONGODB_URI: str = Field(
|
| 51 |
-
default="mongodb+srv://
|
|
|
|
| 52 |
description="Connection URI for the MongoDB Atlas instance.",
|
| 53 |
)
|
| 54 |
|
|
|
|
| 44 |
description="Name of the MongoDB database.",
|
| 45 |
)
|
| 46 |
MONGODB_COLLECTION_NAME: str = Field(
|
| 47 |
+
default="rag_conversations",
|
| 48 |
description="Name of the MongoDB collection for RAG documents.",
|
| 49 |
)
|
| 50 |
MONGODB_URI: str = Field(
|
| 51 |
+
default="mongodb+srv://contextdb:HOqIgSH01CoEiMb1@cluster0.d9cmff.mongodb.net/",
|
| 52 |
+
# default="mongodb+srv://keshavchhaparia:bUSBXeVCGWDyQhDG@saaslabs.awtivxf.mongodb.net/?retryWrites=true&w=majority&appName=saaslabs",
|
| 53 |
description="Connection URI for the MongoDB Atlas instance.",
|
| 54 |
)
|
| 55 |
|
compute_rag_vector_index_openai_contextual_simple.yaml → configs/compute_rag_vector_index_conversations.yaml
RENAMED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
parameters:
|
| 2 |
-
extract_collection_name:
|
| 3 |
-
fetch_limit:
|
| 4 |
-
load_collection_name:
|
| 5 |
-
content_quality_score_threshold: 0.
|
| 6 |
retriever_type: contextual
|
| 7 |
embedding_model_id: text-embedding-3-small
|
| 8 |
embedding_model_type: openai
|
| 9 |
embedding_model_dim: 1536
|
| 10 |
chunk_size: 640
|
| 11 |
contextual_summarization_type: contextual
|
| 12 |
-
contextual_agent_model_id: gpt-4o
|
| 13 |
-
contextual_agent_max_characters:
|
| 14 |
mock: false
|
| 15 |
-
processing_batch_size:
|
| 16 |
processing_max_workers: 2
|
| 17 |
-
device: mps
|
|
|
|
| 1 |
parameters:
|
| 2 |
+
extract_collection_name: test_conversation_documents
|
| 3 |
+
fetch_limit: 0 # No limit - get all conversations
|
| 4 |
+
load_collection_name: rag_conversations
|
| 5 |
+
content_quality_score_threshold: 0.0
|
| 6 |
retriever_type: contextual
|
| 7 |
embedding_model_id: text-embedding-3-small
|
| 8 |
embedding_model_type: openai
|
| 9 |
embedding_model_dim: 1536
|
| 10 |
chunk_size: 640
|
| 11 |
contextual_summarization_type: contextual
|
| 12 |
+
contextual_agent_model_id: gpt-4o-mini
|
| 13 |
+
contextual_agent_max_characters: 200
|
| 14 |
mock: false
|
| 15 |
+
processing_batch_size: 5
|
| 16 |
processing_max_workers: 2
|
| 17 |
+
device: mps # or cuda (for Nvidia GPUs) or mps (for Apple M1/M2/M3 chips)
|
configs/compute_rag_vector_index_openai_contextual_reranked.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
parameters:
|
| 2 |
+
retriever_type: contextual_reranked # Enable re-ranking
|
| 3 |
+
embedding_model_id: text-embedding-3-small
|
| 4 |
+
embedding_model_type: openai
|
| 5 |
+
embedding_model_dim: 1536
|
| 6 |
+
device: mps # or cuda (for Nvidia GPUs) or mps (for Apple M1/M2/M3 chips)
|
| 7 |
+
|
| 8 |
+
# Re-ranking parameters
|
| 9 |
+
enable_reranking: true
|
| 10 |
+
rerank_model_name: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
| 11 |
+
stage1_limit: 50 # Retrieve 50 candidates in stage 1
|
| 12 |
+
final_k: 10 # Return top 10 after re-ranking
|
configs/compute_rag_vector_index_openai_contextual_simple.yaml
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
parameters:
|
| 2 |
-
extract_collection_name:
|
| 3 |
fetch_limit: 200
|
| 4 |
-
load_collection_name:
|
| 5 |
content_quality_score_threshold: 0.6
|
| 6 |
retriever_type: contextual
|
| 7 |
embedding_model_id: text-embedding-3-small
|
|
|
|
| 1 |
parameters:
|
| 2 |
+
extract_collection_name: test_intercom_data
|
| 3 |
fetch_limit: 200
|
| 4 |
+
load_collection_name: rag_intercom
|
| 5 |
content_quality_score_threshold: 0.6
|
| 6 |
retriever_type: contextual
|
| 7 |
embedding_model_id: text-embedding-3-small
|
conversation_analysis_app.py
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
Hugging Face Space app for Conversation Analysis Dashboard.
|
| 4 |
-
|
| 5 |
-
This app displays conversation analysis results in a tabular format,
|
| 6 |
-
showing insights, summaries, and follow-up emails for all conversations
|
| 7 |
-
from the test_intercom_data collection.
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
import os
|
| 11 |
-
import sys
|
| 12 |
-
from pathlib import Path
|
| 13 |
-
|
| 14 |
-
# Add paths
|
| 15 |
-
sys.path.append('.')
|
| 16 |
-
sys.path.append('src')
|
| 17 |
-
|
| 18 |
-
from second_brain_online.application.ui.conversation_analysis_ui import ConversationAnalysisUI
|
| 19 |
-
|
| 20 |
-
def main():
|
| 21 |
-
"""Main function for HF Space deployment."""
|
| 22 |
-
print("🚀 Starting Conversation Analysis Dashboard...")
|
| 23 |
-
print("📊 Loading conversation analysis data from MongoDB...")
|
| 24 |
-
|
| 25 |
-
try:
|
| 26 |
-
# Initialize UI
|
| 27 |
-
ui = ConversationAnalysisUI()
|
| 28 |
-
|
| 29 |
-
print("✅ UI initialized successfully")
|
| 30 |
-
print("🌐 Launching Gradio interface...")
|
| 31 |
-
|
| 32 |
-
# Launch the interface
|
| 33 |
-
ui.launch(
|
| 34 |
-
server_name="0.0.0.0",
|
| 35 |
-
server_port=7860,
|
| 36 |
-
share=True,
|
| 37 |
-
show_error=True
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
except Exception as e:
|
| 41 |
-
print(f"❌ Error starting the application: {e}")
|
| 42 |
-
raise
|
| 43 |
-
|
| 44 |
-
if __name__ == "__main__":
|
| 45 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
correct_init.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
from . import agents, rag
|
| 2 |
-
|
| 3 |
-
# Optional import for evaluation - may cause issues in some environments
|
| 4 |
-
try:
|
| 5 |
-
from .evaluation import evaluate
|
| 6 |
-
__all__ = ["rag", "agents", "evaluate"]
|
| 7 |
-
except ImportError as e:
|
| 8 |
-
print(f"Warning: Could not import evaluation module: {e}")
|
| 9 |
-
__all__ = ["rag", "agents"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
init_fixed.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
from . import agents, rag
|
| 2 |
-
|
| 3 |
-
# Optional import for evaluation - may cause issues in some environments
|
| 4 |
-
try:
|
| 5 |
-
from .evaluation import evaluate
|
| 6 |
-
__all__ = ["rag", "agents", "evaluate"]
|
| 7 |
-
except ImportError as e:
|
| 8 |
-
print(f"Warning: Could not import evaluation module: {e}")
|
| 9 |
-
__all__ = ["rag", "agents"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
migrate_mongodb_data.py
DELETED
|
@@ -1,139 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
Script to migrate test_intercom_data from contextdb instance to keshavchhaparia instance.
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
import sys
|
| 7 |
-
from pymongo import MongoClient
|
| 8 |
-
from loguru import logger
|
| 9 |
-
|
| 10 |
-
# Source MongoDB (contextdb instance)
|
| 11 |
-
SOURCE_URI = "mongodb+srv://contextdb:HOqIgSH01CoEiMb1@cluster0.d9cmff.mongodb.net/"
|
| 12 |
-
SOURCE_DB = "second_brain_course"
|
| 13 |
-
SOURCE_COLLECTION = "test_intercom_data"
|
| 14 |
-
|
| 15 |
-
# Target MongoDB (keshavchhaparia instance)
|
| 16 |
-
TARGET_URI = "mongodb+srv://keshavchhaparia:bUSBXeVCGWDyQhDG@saaslabs.awtivxf.mongodb.net/"
|
| 17 |
-
TARGET_DB = "second_brain_course"
|
| 18 |
-
TARGET_COLLECTION = "test_intercom_data"
|
| 19 |
-
|
| 20 |
-
def migrate_data():
|
| 21 |
-
"""Migrate test_intercom_data collection from source to target MongoDB."""
|
| 22 |
-
|
| 23 |
-
logger.info("🚀 Starting MongoDB data migration...")
|
| 24 |
-
|
| 25 |
-
# Connect to source MongoDB
|
| 26 |
-
logger.info(f"📡 Connecting to source MongoDB: {SOURCE_URI}")
|
| 27 |
-
try:
|
| 28 |
-
source_client = MongoClient(SOURCE_URI)
|
| 29 |
-
source_db = source_client[SOURCE_DB]
|
| 30 |
-
source_collection = source_db[SOURCE_COLLECTION]
|
| 31 |
-
logger.info("✅ Connected to source MongoDB")
|
| 32 |
-
except Exception as e:
|
| 33 |
-
logger.error(f"❌ Failed to connect to source MongoDB: {e}")
|
| 34 |
-
return False
|
| 35 |
-
|
| 36 |
-
# Connect to target MongoDB
|
| 37 |
-
logger.info(f"📡 Connecting to target MongoDB: {TARGET_URI}")
|
| 38 |
-
try:
|
| 39 |
-
target_client = MongoClient(TARGET_URI)
|
| 40 |
-
target_db = target_client[TARGET_DB]
|
| 41 |
-
target_collection = target_db[TARGET_COLLECTION]
|
| 42 |
-
logger.info("✅ Connected to target MongoDB")
|
| 43 |
-
except Exception as e:
|
| 44 |
-
logger.error(f"❌ Failed to connect to target MongoDB: {e}")
|
| 45 |
-
return False
|
| 46 |
-
|
| 47 |
-
try:
|
| 48 |
-
# Get document count from source
|
| 49 |
-
source_count = source_collection.count_documents({})
|
| 50 |
-
logger.info(f"📊 Source collection has {source_count} documents")
|
| 51 |
-
|
| 52 |
-
if source_count == 0:
|
| 53 |
-
logger.warning("⚠️ Source collection is empty, nothing to migrate")
|
| 54 |
-
return True
|
| 55 |
-
|
| 56 |
-
# Delete existing target collection
|
| 57 |
-
logger.info(f"🗑️ Deleting existing target collection: {TARGET_COLLECTION}")
|
| 58 |
-
target_collection.drop()
|
| 59 |
-
logger.info("✅ Target collection deleted")
|
| 60 |
-
|
| 61 |
-
# Copy documents from source to target
|
| 62 |
-
logger.info("📋 Copying documents from source to target...")
|
| 63 |
-
|
| 64 |
-
# Process in batches to avoid memory issues
|
| 65 |
-
batch_size = 100
|
| 66 |
-
total_copied = 0
|
| 67 |
-
|
| 68 |
-
for skip in range(0, source_count, batch_size):
|
| 69 |
-
# Get batch of documents
|
| 70 |
-
documents = list(source_collection.find().skip(skip).limit(batch_size))
|
| 71 |
-
|
| 72 |
-
if documents:
|
| 73 |
-
# Insert batch into target
|
| 74 |
-
target_collection.insert_many(documents)
|
| 75 |
-
total_copied += len(documents)
|
| 76 |
-
logger.info(f"📦 Copied batch: {len(documents)} documents (Total: {total_copied}/{source_count})")
|
| 77 |
-
|
| 78 |
-
# Verify migration
|
| 79 |
-
target_count = target_collection.count_documents({})
|
| 80 |
-
logger.info(f"✅ Migration completed! Target collection has {target_count} documents")
|
| 81 |
-
|
| 82 |
-
if target_count == source_count:
|
| 83 |
-
logger.info("🎉 Migration successful - document counts match!")
|
| 84 |
-
return True
|
| 85 |
-
else:
|
| 86 |
-
logger.error(f"❌ Migration failed - document count mismatch: {target_count} vs {source_count}")
|
| 87 |
-
return False
|
| 88 |
-
|
| 89 |
-
except Exception as e:
|
| 90 |
-
logger.error(f"❌ Migration failed: {e}")
|
| 91 |
-
return False
|
| 92 |
-
|
| 93 |
-
finally:
|
| 94 |
-
# Close connections
|
| 95 |
-
source_client.close()
|
| 96 |
-
target_client.close()
|
| 97 |
-
logger.info("🔌 MongoDB connections closed")
|
| 98 |
-
|
| 99 |
-
def verify_migration():
|
| 100 |
-
"""Verify the migration was successful."""
|
| 101 |
-
logger.info("🔍 Verifying migration...")
|
| 102 |
-
|
| 103 |
-
try:
|
| 104 |
-
# Connect to target MongoDB
|
| 105 |
-
target_client = MongoClient(TARGET_URI)
|
| 106 |
-
target_db = target_client[TARGET_DB]
|
| 107 |
-
target_collection = target_db[TARGET_COLLECTION]
|
| 108 |
-
|
| 109 |
-
# Get sample documents
|
| 110 |
-
sample_docs = list(target_collection.find().limit(3))
|
| 111 |
-
logger.info(f"📋 Sample documents in target collection:")
|
| 112 |
-
|
| 113 |
-
for i, doc in enumerate(sample_docs, 1):
|
| 114 |
-
conversation_id = doc.get('metadata', {}).get('properties', {}).get('conversation_id', 'N/A')
|
| 115 |
-
has_analysis = 'conversation_analysis' in doc
|
| 116 |
-
quality_score = doc.get('content_quality_score', 'N/A')
|
| 117 |
-
logger.info(f" {i}. Conversation ID: {conversation_id}, Has Analysis: {has_analysis}, Quality: {quality_score}")
|
| 118 |
-
|
| 119 |
-
target_client.close()
|
| 120 |
-
logger.info("✅ Verification completed")
|
| 121 |
-
|
| 122 |
-
except Exception as e:
|
| 123 |
-
logger.error(f"❌ Verification failed: {e}")
|
| 124 |
-
|
| 125 |
-
if __name__ == "__main__":
|
| 126 |
-
logger.info("=" * 60)
|
| 127 |
-
logger.info("🔄 MongoDB Data Migration Script")
|
| 128 |
-
logger.info("=" * 60)
|
| 129 |
-
|
| 130 |
-
# Run migration
|
| 131 |
-
success = migrate_data()
|
| 132 |
-
|
| 133 |
-
if success:
|
| 134 |
-
# Verify migration
|
| 135 |
-
verify_migration()
|
| 136 |
-
logger.info("🎉 Migration completed successfully!")
|
| 137 |
-
else:
|
| 138 |
-
logger.error("❌ Migration failed!")
|
| 139 |
-
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pyproject.toml
CHANGED
|
@@ -26,6 +26,7 @@ dependencies = [
|
|
| 26 |
"comet_ml>=3.47.6",
|
| 27 |
"langchain-huggingface>=0.1.2",
|
| 28 |
"huggingface-hub>=0.27.1",
|
|
|
|
| 29 |
]
|
| 30 |
|
| 31 |
[dependency-groups]
|
|
|
|
| 26 |
"comet_ml>=3.47.6",
|
| 27 |
"langchain-huggingface>=0.1.2",
|
| 28 |
"huggingface-hub>=0.27.1",
|
| 29 |
+
"sentence-transformers>=3.0.0",
|
| 30 |
]
|
| 31 |
|
| 32 |
[dependency-groups]
|
src/second_brain_online/application/agents/tools/mongodb_retriever.py
CHANGED
|
@@ -44,6 +44,10 @@ class MongoDBRetrieverTool(Tool):
|
|
| 44 |
retriever_type=config["retriever_type"],
|
| 45 |
k=5,
|
| 46 |
device=config["device"],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
@track(name="MongoDBRetrieverTool.forward")
|
|
|
|
| 44 |
retriever_type=config["retriever_type"],
|
| 45 |
k=5,
|
| 46 |
device=config["device"],
|
| 47 |
+
enable_reranking=config.get("enable_reranking", False),
|
| 48 |
+
rerank_model_name=config.get("rerank_model_name", "cross-encoder/ms-marco-MiniLM-L-2-v2"),
|
| 49 |
+
stage1_limit=config.get("stage1_limit", 50),
|
| 50 |
+
final_k=config.get("final_k", 10),
|
| 51 |
)
|
| 52 |
|
| 53 |
@track(name="MongoDBRetrieverTool.forward")
|
src/second_brain_online/application/rag/retrievers.py
CHANGED
|
@@ -13,9 +13,11 @@ from .embeddings import EmbeddingModelType, EmbeddingsModel, get_embedding_model
|
|
| 13 |
from .splitters import get_splitter
|
| 14 |
|
| 15 |
# Add these type definitions at the top of the file
|
| 16 |
-
RetrieverType = Literal["contextual", "parent"]
|
| 17 |
RetrieverModel = Union[
|
| 18 |
-
MongoDBAtlasHybridSearchRetriever,
|
|
|
|
|
|
|
| 19 |
]
|
| 20 |
|
| 21 |
|
|
@@ -25,6 +27,10 @@ def get_retriever(
|
|
| 25 |
retriever_type: RetrieverType = "contextual",
|
| 26 |
k: int = 3,
|
| 27 |
device: str = "cpu",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
) -> RetrieverModel:
|
| 29 |
logger.info(
|
| 30 |
f"Getting '{retriever_type}' retriever for '{embedding_model_type}' - '{embedding_model_id}' on '{device}' "
|
|
@@ -35,13 +41,36 @@ def get_retriever(
|
|
| 35 |
embedding_model_id, embedding_model_type, device
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
else:
|
| 43 |
raise ValueError(f"Invalid retriever type: {retriever_type}")
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def get_hybrid_search_retriever(
|
| 47 |
embedding_model: EmbeddingsModel, k: int
|
|
|
|
| 13 |
from .splitters import get_splitter
|
| 14 |
|
| 15 |
# Add these type definitions at the top of the file
|
| 16 |
+
RetrieverType = Literal["contextual", "parent", "contextual_reranked", "parent_reranked"]
|
| 17 |
RetrieverModel = Union[
|
| 18 |
+
MongoDBAtlasHybridSearchRetriever,
|
| 19 |
+
MongoDBAtlasParentDocumentRetriever,
|
| 20 |
+
"RerankingRetriever"
|
| 21 |
]
|
| 22 |
|
| 23 |
|
|
|
|
| 27 |
retriever_type: RetrieverType = "contextual",
|
| 28 |
k: int = 3,
|
| 29 |
device: str = "cpu",
|
| 30 |
+
enable_reranking: bool = False,
|
| 31 |
+
rerank_model_name: str = "cross-encoder/ms-marco-MiniLM-L-2-v2",
|
| 32 |
+
stage1_limit: int = 50,
|
| 33 |
+
final_k: int = 10,
|
| 34 |
) -> RetrieverModel:
|
| 35 |
logger.info(
|
| 36 |
f"Getting '{retriever_type}' retriever for '{embedding_model_type}' - '{embedding_model_id}' on '{device}' "
|
|
|
|
| 41 |
embedding_model_id, embedding_model_type, device
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Determine base retriever type
|
| 45 |
+
base_retriever_type = retriever_type
|
| 46 |
+
if retriever_type in ["contextual_reranked", "parent_reranked"]:
|
| 47 |
+
base_retriever_type = retriever_type.replace("_reranked", "")
|
| 48 |
+
enable_reranking = True
|
| 49 |
+
else:
|
| 50 |
+
enable_reranking = enable_reranking
|
| 51 |
+
|
| 52 |
+
# Create base retriever
|
| 53 |
+
if base_retriever_type == "contextual":
|
| 54 |
+
base_retriever = get_hybrid_search_retriever(embedding_model, k)
|
| 55 |
+
elif base_retriever_type == "parent":
|
| 56 |
+
base_retriever = get_parent_document_retriever(embedding_model, k)
|
| 57 |
else:
|
| 58 |
raise ValueError(f"Invalid retriever type: {retriever_type}")
|
| 59 |
|
| 60 |
+
# Wrap with re-ranking if enabled
|
| 61 |
+
if enable_reranking:
|
| 62 |
+
from second_brain_offline.application.rag.reranker import RerankingRetriever
|
| 63 |
+
logger.info(f"Enabling re-ranking with model: {rerank_model_name}")
|
| 64 |
+
logger.info(f"Stage 1 limit: {stage1_limit}, Final k: {final_k}")
|
| 65 |
+
return RerankingRetriever(
|
| 66 |
+
base_retriever=base_retriever,
|
| 67 |
+
rerank_model_name=rerank_model_name,
|
| 68 |
+
stage1_limit=stage1_limit,
|
| 69 |
+
final_k=final_k
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
return base_retriever
|
| 73 |
+
|
| 74 |
|
| 75 |
def get_hybrid_search_retriever(
|
| 76 |
embedding_model: EmbeddingsModel, k: int
|
src/second_brain_online/application/ui/custom_gradio_ui.py
CHANGED
|
@@ -1,18 +1,40 @@
|
|
| 1 |
import json
|
| 2 |
import re
|
| 3 |
-
from typing import Any, Dict, List, Tuple
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
| 6 |
from smolagents import ToolCallingAgent
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
class CustomGradioUI:
|
| 10 |
"""Custom Gradio UI for better formatting of agent responses with source attribution."""
|
| 11 |
|
| 12 |
def __init__(self, agent: ToolCallingAgent):
|
| 13 |
self.agent = agent
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
self.setup_ui()
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def setup_ui(self):
|
| 17 |
"""Setup the Gradio interface with custom components."""
|
| 18 |
with gr.Blocks(
|
|
@@ -68,8 +90,31 @@ class CustomGradioUI:
|
|
| 68 |
with gr.Row():
|
| 69 |
with gr.Column():
|
| 70 |
self.answer_output = gr.HTML(label="Answer")
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
with gr.Accordion("🔍 Debug: Raw Response", open=False):
|
| 75 |
self.debug_output = gr.Textbox(
|
|
@@ -83,19 +128,33 @@ class CustomGradioUI:
|
|
| 83 |
self.submit_btn.click(
|
| 84 |
fn=self.process_query,
|
| 85 |
inputs=[self.query_input],
|
| 86 |
-
outputs=[self.answer_output, self.sources_output, self.tools_output, self.debug_output]
|
| 87 |
)
|
| 88 |
|
| 89 |
self.query_input.submit(
|
| 90 |
fn=self.process_query,
|
| 91 |
inputs=[self.query_input],
|
| 92 |
-
outputs=[self.answer_output, self.sources_output, self.tools_output, self.debug_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
-
def process_query(self, query: str) -> Tuple[str, str, str, str]:
|
| 96 |
"""Process the user query and return formatted response components."""
|
| 97 |
if not query.strip():
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
try:
|
| 101 |
# Run the agent
|
|
@@ -127,11 +186,14 @@ class CustomGradioUI:
|
|
| 127 |
tools_html = self.format_tools(tools_used)
|
| 128 |
debug_text = str(result)
|
| 129 |
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
except Exception as e:
|
| 133 |
error_msg = f"<div style='color: #dc3545; padding: 12px; border: 1px solid #f5c6cb; border-radius: 4px; background-color: #f8d7da;'>Error: {str(e)}</div>"
|
| 134 |
-
return error_msg, "", "", str(e)
|
| 135 |
|
| 136 |
def parse_agent_response(self, result: Any, agent_logs: List = None) -> Tuple[str, List[Dict], List[str]]:
|
| 137 |
"""Parse the agent response to extract answer, sources, and tools used."""
|
|
@@ -173,10 +235,14 @@ class CustomGradioUI:
|
|
| 173 |
|
| 174 |
# Extract sources from observations
|
| 175 |
if hasattr(step, 'observations') and step.observations:
|
|
|
|
|
|
|
| 176 |
# Look for complete document blocks with all content
|
| 177 |
document_pattern = r'<document id="(\d+)">\s*<title>(.*?)</title>\s*<date>(.*?)</date>\s*<contextual_summary>(.*?)</contextual_summary>\s*<marketing_insights>(.*?)</marketing_insights>\s*<content>(.*?)</content>'
|
| 178 |
document_matches = re.findall(document_pattern, step.observations, re.DOTALL)
|
| 179 |
|
|
|
|
|
|
|
| 180 |
for doc_id, doc_title, doc_date, contextual_summary, marketing_insights, content in document_matches:
|
| 181 |
# Clean up the basic fields
|
| 182 |
clean_title = doc_title.strip()
|
|
@@ -209,6 +275,40 @@ class CustomGradioUI:
|
|
| 209 |
"key_findings": key_findings,
|
| 210 |
"quotes": quotes
|
| 211 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
# Fallback: Try to extract from result string if no logs provided
|
| 214 |
if not agent_logs:
|
|
@@ -311,9 +411,9 @@ class CustomGradioUI:
|
|
| 311 |
def format_sources(self, sources: List[Dict]) -> str:
|
| 312 |
"""Format the sources with rich information including key findings and marketing insights."""
|
| 313 |
if not sources:
|
| 314 |
-
return "<div><
|
| 315 |
|
| 316 |
-
sources_html = "<div
|
| 317 |
|
| 318 |
for i, source in enumerate(sources, 1):
|
| 319 |
title = source.get("title", "Unknown")
|
|
@@ -369,9 +469,9 @@ class CustomGradioUI:
|
|
| 369 |
def format_tools(self, tools_used: List[str]) -> str:
|
| 370 |
"""Format the tools used with proper HTML structure."""
|
| 371 |
if not tools_used:
|
| 372 |
-
return "<div><
|
| 373 |
|
| 374 |
-
tools_html = "<div
|
| 375 |
|
| 376 |
for tool in tools_used:
|
| 377 |
tools_html += f"""
|
|
@@ -383,6 +483,276 @@ class CustomGradioUI:
|
|
| 383 |
tools_html += "</div>"
|
| 384 |
return tools_html
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
def launch(self, **kwargs):
|
| 387 |
"""Launch the Gradio interface."""
|
| 388 |
return self.interface.launch(**kwargs)
|
|
|
|
| 1 |
import json
|
| 2 |
import re
|
| 3 |
+
from typing import Any, Dict, List, Tuple, Optional
|
| 4 |
+
from datetime import datetime
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from pymongo import MongoClient
|
| 9 |
from smolagents import ToolCallingAgent
|
| 10 |
|
| 11 |
+
from second_brain_online.config import settings
|
| 12 |
+
|
| 13 |
|
| 14 |
class CustomGradioUI:
|
| 15 |
"""Custom Gradio UI for better formatting of agent responses with source attribution."""
|
| 16 |
|
| 17 |
def __init__(self, agent: ToolCallingAgent):
|
| 18 |
self.agent = agent
|
| 19 |
+
self.mongodb_client = None
|
| 20 |
+
self.database = None
|
| 21 |
+
self.conversation_collection = None
|
| 22 |
+
self.setup_mongodb()
|
| 23 |
self.setup_ui()
|
| 24 |
|
| 25 |
+
def setup_mongodb(self):
|
| 26 |
+
"""Setup MongoDB connection."""
|
| 27 |
+
try:
|
| 28 |
+
self.mongodb_client = MongoClient(settings.MONGODB_URI)
|
| 29 |
+
self.database = self.mongodb_client[settings.MONGODB_DATABASE_NAME]
|
| 30 |
+
self.conversation_collection = self.database["test_conversation_documents"]
|
| 31 |
+
print("✅ MongoDB connection established successfully")
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"❌ Failed to connect to MongoDB: {e}")
|
| 34 |
+
self.mongodb_client = None
|
| 35 |
+
self.database = None
|
| 36 |
+
self.conversation_collection = None
|
| 37 |
+
|
| 38 |
def setup_ui(self):
|
| 39 |
"""Setup the Gradio interface with custom components."""
|
| 40 |
with gr.Blocks(
|
|
|
|
| 90 |
with gr.Row():
|
| 91 |
with gr.Column():
|
| 92 |
self.answer_output = gr.HTML(label="Answer")
|
| 93 |
+
|
| 94 |
+
with gr.Accordion("📊 Conversations", open=False):
|
| 95 |
+
with gr.Row():
|
| 96 |
+
self.conversation_search = gr.Textbox(
|
| 97 |
+
label="Search Conversations",
|
| 98 |
+
placeholder="Search by conversation ID, customer info, summary, or key findings...",
|
| 99 |
+
scale=4
|
| 100 |
+
)
|
| 101 |
+
self.clear_search_btn = gr.Button("Clear", scale=1)
|
| 102 |
+
|
| 103 |
+
self.conversation_table = gr.Dataframe(
|
| 104 |
+
headers=["Conversation ID", "Customer Info", "Summary", "Key Findings", "Follow-up Email"],
|
| 105 |
+
datatype=["str", "str", "str", "str", "str"],
|
| 106 |
+
interactive=False,
|
| 107 |
+
label="Available Conversations",
|
| 108 |
+
wrap=True,
|
| 109 |
+
max_height=400,
|
| 110 |
+
value=self.load_conversations()
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
with gr.Accordion("📚 Sources", open=False):
|
| 114 |
+
self.sources_output = gr.HTML(label="Sources")
|
| 115 |
+
|
| 116 |
+
with gr.Accordion("🛠️ Tools Used", open=False):
|
| 117 |
+
self.tools_output = gr.HTML(label="Tools Used")
|
| 118 |
|
| 119 |
with gr.Accordion("🔍 Debug: Raw Response", open=False):
|
| 120 |
self.debug_output = gr.Textbox(
|
|
|
|
| 128 |
self.submit_btn.click(
|
| 129 |
fn=self.process_query,
|
| 130 |
inputs=[self.query_input],
|
| 131 |
+
outputs=[self.answer_output, self.sources_output, self.tools_output, self.debug_output, self.conversation_table]
|
| 132 |
)
|
| 133 |
|
| 134 |
self.query_input.submit(
|
| 135 |
fn=self.process_query,
|
| 136 |
inputs=[self.query_input],
|
| 137 |
+
outputs=[self.answer_output, self.sources_output, self.tools_output, self.debug_output, self.conversation_table]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Conversation search handlers
|
| 141 |
+
self.conversation_search.change(
|
| 142 |
+
fn=self.filter_conversations,
|
| 143 |
+
inputs=[self.conversation_search],
|
| 144 |
+
outputs=[self.conversation_table]
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
self.clear_search_btn.click(
|
| 148 |
+
fn=self.clear_conversation_search,
|
| 149 |
+
inputs=[],
|
| 150 |
+
outputs=[self.conversation_search, self.conversation_table]
|
| 151 |
)
|
| 152 |
|
| 153 |
+
def process_query(self, query: str) -> Tuple[str, str, str, str, pd.DataFrame]:
|
| 154 |
"""Process the user query and return formatted response components."""
|
| 155 |
if not query.strip():
|
| 156 |
+
# Clear all outputs when query is empty
|
| 157 |
+
return "", "", "", "", self.load_conversations()
|
| 158 |
|
| 159 |
try:
|
| 160 |
# Run the agent
|
|
|
|
| 186 |
tools_html = self.format_tools(tools_used)
|
| 187 |
debug_text = str(result)
|
| 188 |
|
| 189 |
+
# Filter conversations based on sources used
|
| 190 |
+
filtered_conversations = self.filter_conversations_by_sources(sources)
|
| 191 |
+
|
| 192 |
+
return answer_html, sources_html, tools_html, debug_text, filtered_conversations
|
| 193 |
|
| 194 |
except Exception as e:
|
| 195 |
error_msg = f"<div style='color: #dc3545; padding: 12px; border: 1px solid #f5c6cb; border-radius: 4px; background-color: #f8d7da;'>Error: {str(e)}</div>"
|
| 196 |
+
return error_msg, "", "", str(e), self.load_conversations()
|
| 197 |
|
| 198 |
def parse_agent_response(self, result: Any, agent_logs: List = None) -> Tuple[str, List[Dict], List[str]]:
|
| 199 |
"""Parse the agent response to extract answer, sources, and tools used."""
|
|
|
|
| 235 |
|
| 236 |
# Extract sources from observations
|
| 237 |
if hasattr(step, 'observations') and step.observations:
|
| 238 |
+
print(f"DEBUG: Processing observations: {step.observations[:500]}...")
|
| 239 |
+
|
| 240 |
# Look for complete document blocks with all content
|
| 241 |
document_pattern = r'<document id="(\d+)">\s*<title>(.*?)</title>\s*<date>(.*?)</date>\s*<contextual_summary>(.*?)</contextual_summary>\s*<marketing_insights>(.*?)</marketing_insights>\s*<content>(.*?)</content>'
|
| 242 |
document_matches = re.findall(document_pattern, step.observations, re.DOTALL)
|
| 243 |
|
| 244 |
+
print(f"DEBUG: Found {len(document_matches)} document matches with full pattern")
|
| 245 |
+
|
| 246 |
for doc_id, doc_title, doc_date, contextual_summary, marketing_insights, content in document_matches:
|
| 247 |
# Clean up the basic fields
|
| 248 |
clean_title = doc_title.strip()
|
|
|
|
| 275 |
"key_findings": key_findings,
|
| 276 |
"quotes": quotes
|
| 277 |
})
|
| 278 |
+
|
| 279 |
+
# Fallback: Look for simpler document patterns if the full pattern didn't match
|
| 280 |
+
if not document_matches:
|
| 281 |
+
print("DEBUG: Trying fallback document patterns...")
|
| 282 |
+
|
| 283 |
+
# Pattern 1: Simple document with ID and title
|
| 284 |
+
simple_pattern = r'<document id="(\d+)">\s*<title>(.*?)</title>'
|
| 285 |
+
simple_matches = re.findall(simple_pattern, step.observations, re.DOTALL)
|
| 286 |
+
print(f"DEBUG: Found {len(simple_matches)} simple document matches")
|
| 287 |
+
|
| 288 |
+
for doc_id, doc_title in simple_matches:
|
| 289 |
+
sources.append({
|
| 290 |
+
"id": doc_id,
|
| 291 |
+
"title": doc_title.strip(),
|
| 292 |
+
"date": "",
|
| 293 |
+
"summary": "",
|
| 294 |
+
"key_findings": [],
|
| 295 |
+
"quotes": []
|
| 296 |
+
})
|
| 297 |
+
|
| 298 |
+
# Pattern 2: Look for conversation IDs in the content
|
| 299 |
+
conv_id_pattern = r'conversation[_\s]*id[:\s]*(\d+)'
|
| 300 |
+
conv_id_matches = re.findall(conv_id_pattern, step.observations, re.IGNORECASE)
|
| 301 |
+
print(f"DEBUG: Found {len(conv_id_matches)} conversation ID matches: {conv_id_matches}")
|
| 302 |
+
|
| 303 |
+
for conv_id in conv_id_matches:
|
| 304 |
+
sources.append({
|
| 305 |
+
"id": conv_id,
|
| 306 |
+
"title": f"Conversation {conv_id}",
|
| 307 |
+
"date": "",
|
| 308 |
+
"summary": "",
|
| 309 |
+
"key_findings": [],
|
| 310 |
+
"quotes": []
|
| 311 |
+
})
|
| 312 |
|
| 313 |
# Fallback: Try to extract from result string if no logs provided
|
| 314 |
if not agent_logs:
|
|
|
|
| 411 |
def format_sources(self, sources: List[Dict]) -> str:
|
| 412 |
"""Format the sources with rich information including key findings and marketing insights."""
|
| 413 |
if not sources:
|
| 414 |
+
return "<div><p>No sources found.</p></div>"
|
| 415 |
|
| 416 |
+
sources_html = "<div>"
|
| 417 |
|
| 418 |
for i, source in enumerate(sources, 1):
|
| 419 |
title = source.get("title", "Unknown")
|
|
|
|
| 469 |
def format_tools(self, tools_used: List[str]) -> str:
|
| 470 |
"""Format the tools used with proper HTML structure."""
|
| 471 |
if not tools_used:
|
| 472 |
+
return "<div><p>No tools used.</p></div>"
|
| 473 |
|
| 474 |
+
tools_html = "<div>"
|
| 475 |
|
| 476 |
for tool in tools_used:
|
| 477 |
tools_html += f"""
|
|
|
|
| 483 |
tools_html += "</div>"
|
| 484 |
return tools_html
|
| 485 |
|
| 486 |
+
def load_conversations(self, limit: int = 50) -> pd.DataFrame:
|
| 487 |
+
"""Load conversations from MongoDB and format for display."""
|
| 488 |
+
if self.conversation_collection is None:
|
| 489 |
+
return pd.DataFrame(columns=["Conversation ID", "Customer Info", "Summary", "Key Findings", "Follow-up Email"])
|
| 490 |
+
|
| 491 |
+
try:
|
| 492 |
+
# Query for documents with conversation_analysis
|
| 493 |
+
pipeline = [
|
| 494 |
+
{"$match": {"conversation_analysis": {"$exists": True}}},
|
| 495 |
+
{"$limit": limit},
|
| 496 |
+
{"$project": {
|
| 497 |
+
"conversation_id": "$metadata.properties.conversation_id",
|
| 498 |
+
"user_id": "$metadata.properties.user_id",
|
| 499 |
+
"icp_region": "$metadata.properties.icp_region",
|
| 500 |
+
"icp_country": "$metadata.properties.icp_country",
|
| 501 |
+
"team_size": "$metadata.properties.team_size",
|
| 502 |
+
"summary": "$conversation_analysis.aggregated_contextual_summary",
|
| 503 |
+
"key_findings": "$conversation_analysis.aggregated_marketing_insights.key_findings",
|
| 504 |
+
"follow_up_email": "$conversation_analysis.follow_up_email"
|
| 505 |
+
}}
|
| 506 |
+
]
|
| 507 |
+
|
| 508 |
+
docs = list(self.conversation_collection.aggregate(pipeline))
|
| 509 |
+
|
| 510 |
+
data = []
|
| 511 |
+
for doc in docs:
|
| 512 |
+
conversation_id = doc.get("conversation_id", "Unknown")
|
| 513 |
+
user_id = doc.get("user_id", "N/A")
|
| 514 |
+
icp_region = doc.get("icp_region", "N/A")
|
| 515 |
+
icp_country = doc.get("icp_country", "N/A")
|
| 516 |
+
team_size = doc.get("team_size", "N/A")
|
| 517 |
+
summary = doc.get("summary", "No summary available")
|
| 518 |
+
follow_up_email = doc.get("follow_up_email", "No follow-up email available")
|
| 519 |
+
|
| 520 |
+
# Format customer info into a single column
|
| 521 |
+
customer_info_parts = []
|
| 522 |
+
if user_id != "N/A":
|
| 523 |
+
customer_info_parts.append(f"User: {user_id}")
|
| 524 |
+
if icp_region != "N/A":
|
| 525 |
+
customer_info_parts.append(f"Region: {icp_region}")
|
| 526 |
+
if icp_country != "N/A":
|
| 527 |
+
customer_info_parts.append(f"Country: {icp_country}")
|
| 528 |
+
if team_size != "N/A":
|
| 529 |
+
customer_info_parts.append(f"Team Size: {team_size}")
|
| 530 |
+
|
| 531 |
+
customer_info = "\n".join(customer_info_parts) if customer_info_parts else "No customer info available"
|
| 532 |
+
|
| 533 |
+
# Format key findings
|
| 534 |
+
key_findings = doc.get("key_findings", [])
|
| 535 |
+
if key_findings and isinstance(key_findings, list):
|
| 536 |
+
findings_text = "\n".join([f"• {finding.get('finding', '')}" for finding in key_findings[:3]]) # Limit to 3 findings
|
| 537 |
+
if len(key_findings) > 3:
|
| 538 |
+
findings_text += f"\n... and {len(key_findings) - 3} more"
|
| 539 |
+
else:
|
| 540 |
+
findings_text = "No key findings available"
|
| 541 |
+
|
| 542 |
+
# Truncate summary for table display
|
| 543 |
+
if len(summary) > 200:
|
| 544 |
+
summary = summary[:200] + "..."
|
| 545 |
+
|
| 546 |
+
# Truncate follow-up email for table display
|
| 547 |
+
if len(follow_up_email) > 150:
|
| 548 |
+
follow_up_email = follow_up_email[:150] + "..."
|
| 549 |
+
|
| 550 |
+
data.append({
|
| 551 |
+
"Conversation ID": conversation_id,
|
| 552 |
+
"Customer Info": customer_info,
|
| 553 |
+
"Summary": summary,
|
| 554 |
+
"Key Findings": findings_text,
|
| 555 |
+
"Follow-up Email": follow_up_email
|
| 556 |
+
})
|
| 557 |
+
|
| 558 |
+
return pd.DataFrame(data)
|
| 559 |
+
|
| 560 |
+
except Exception as e:
|
| 561 |
+
print(f"Error loading conversations: {e}")
|
| 562 |
+
return pd.DataFrame(columns=["Conversation ID", "Customer Info", "Summary", "Key Findings", "Follow-up Email"])
|
| 563 |
+
|
| 564 |
+
def filter_conversations_by_sources(self, sources: List[Dict]) -> pd.DataFrame:
|
| 565 |
+
"""Filter conversations to show only those used in the current query."""
|
| 566 |
+
if not sources or self.conversation_collection is None:
|
| 567 |
+
return self.load_conversations()
|
| 568 |
+
|
| 569 |
+
try:
|
| 570 |
+
# Extract conversation IDs from sources
|
| 571 |
+
source_conversation_ids = set()
|
| 572 |
+
|
| 573 |
+
print(f"DEBUG: Filtering conversations based on {len(sources)} sources")
|
| 574 |
+
|
| 575 |
+
for source in sources:
|
| 576 |
+
print(f"DEBUG: Processing source: {source}")
|
| 577 |
+
|
| 578 |
+
# Try to extract conversation ID from various possible fields
|
| 579 |
+
doc_id = source.get("id", "")
|
| 580 |
+
title = source.get("title", "")
|
| 581 |
+
|
| 582 |
+
# Method 1: Try to extract conversation ID from title (if it contains conversation ID)
|
| 583 |
+
if title and "conversation" in title.lower():
|
| 584 |
+
# Look for conversation ID pattern in title
|
| 585 |
+
import re
|
| 586 |
+
conv_id_match = re.search(r'conversation[_\s]*(\d+)', title, re.IGNORECASE)
|
| 587 |
+
if conv_id_match:
|
| 588 |
+
conv_id = conv_id_match.group(1)
|
| 589 |
+
source_conversation_ids.add(conv_id)
|
| 590 |
+
print(f"DEBUG: Found conversation ID from title: {conv_id}")
|
| 591 |
+
continue
|
| 592 |
+
|
| 593 |
+
# Method 2: Query the RAG collection to find the conversation ID for this document
|
| 594 |
+
if doc_id:
|
| 595 |
+
try:
|
| 596 |
+
# Use the correct collection name for RAG data
|
| 597 |
+
rag_collection = self.database["rag_conversations"]
|
| 598 |
+
|
| 599 |
+
# Try different query patterns
|
| 600 |
+
doc = None
|
| 601 |
+
|
| 602 |
+
# Try by _id if it's a valid ObjectId
|
| 603 |
+
if doc_id.isdigit():
|
| 604 |
+
doc = rag_collection.find_one({"_id": int(doc_id)})
|
| 605 |
+
|
| 606 |
+
if not doc:
|
| 607 |
+
# Try by properties.conversation_id
|
| 608 |
+
doc = rag_collection.find_one({"properties.conversation_id": doc_id})
|
| 609 |
+
|
| 610 |
+
if not doc:
|
| 611 |
+
# Try by conversation_id in properties
|
| 612 |
+
doc = rag_collection.find_one({"properties.conversation_id": str(doc_id)})
|
| 613 |
+
|
| 614 |
+
if doc and "properties" in doc and "conversation_id" in doc["properties"]:
|
| 615 |
+
conv_id = doc["properties"]["conversation_id"]
|
| 616 |
+
if conv_id:
|
| 617 |
+
source_conversation_ids.add(str(conv_id))
|
| 618 |
+
print(f"DEBUG: Found conversation ID from RAG query: {conv_id}")
|
| 619 |
+
else:
|
| 620 |
+
print(f"DEBUG: No conversation ID found for doc_id: {doc_id}")
|
| 621 |
+
|
| 622 |
+
except Exception as e:
|
| 623 |
+
print(f"DEBUG: Error querying RAG collection for doc_id {doc_id}: {e}")
|
| 624 |
+
|
| 625 |
+
print(f"DEBUG: Found {len(source_conversation_ids)} unique conversation IDs: {source_conversation_ids}")
|
| 626 |
+
|
| 627 |
+
if not source_conversation_ids:
|
| 628 |
+
print("DEBUG: No conversation IDs found, returning all conversations")
|
| 629 |
+
return self.load_conversations()
|
| 630 |
+
|
| 631 |
+
# Query for conversations that match the source conversation IDs
|
| 632 |
+
pipeline = [
|
| 633 |
+
{"$match": {
|
| 634 |
+
"conversation_analysis": {"$exists": True},
|
| 635 |
+
"metadata.properties.conversation_id": {"$in": list(source_conversation_ids)}
|
| 636 |
+
}},
|
| 637 |
+
{"$project": {
|
| 638 |
+
"conversation_id": "$metadata.properties.conversation_id",
|
| 639 |
+
"user_id": "$metadata.properties.user_id",
|
| 640 |
+
"icp_region": "$metadata.properties.icp_region",
|
| 641 |
+
"icp_country": "$metadata.properties.icp_country",
|
| 642 |
+
"team_size": "$metadata.properties.team_size",
|
| 643 |
+
"summary": "$conversation_analysis.aggregated_contextual_summary",
|
| 644 |
+
"key_findings": "$conversation_analysis.aggregated_marketing_insights.key_findings",
|
| 645 |
+
"follow_up_email": "$conversation_analysis.follow_up_email"
|
| 646 |
+
}}
|
| 647 |
+
]
|
| 648 |
+
|
| 649 |
+
docs = list(self.conversation_collection.aggregate(pipeline))
|
| 650 |
+
print(f"DEBUG: Found {len(docs)} matching conversation documents")
|
| 651 |
+
|
| 652 |
+
data = []
|
| 653 |
+
for doc in docs:
|
| 654 |
+
conversation_id = doc.get("conversation_id", "Unknown")
|
| 655 |
+
user_id = doc.get("user_id", "N/A")
|
| 656 |
+
icp_region = doc.get("icp_region", "N/A")
|
| 657 |
+
icp_country = doc.get("icp_country", "N/A")
|
| 658 |
+
team_size = doc.get("team_size", "N/A")
|
| 659 |
+
summary = doc.get("summary", "No summary available")
|
| 660 |
+
follow_up_email = doc.get("follow_up_email", "No follow-up email available")
|
| 661 |
+
|
| 662 |
+
# Format customer info into a single column
|
| 663 |
+
customer_info_parts = []
|
| 664 |
+
if user_id != "N/A":
|
| 665 |
+
customer_info_parts.append(f"User: {user_id}")
|
| 666 |
+
if icp_region != "N/A":
|
| 667 |
+
customer_info_parts.append(f"Region: {icp_region}")
|
| 668 |
+
if icp_country != "N/A":
|
| 669 |
+
customer_info_parts.append(f"Country: {icp_country}")
|
| 670 |
+
if team_size != "N/A":
|
| 671 |
+
customer_info_parts.append(f"Team Size: {team_size}")
|
| 672 |
+
|
| 673 |
+
customer_info = "\n".join(customer_info_parts) if customer_info_parts else "No customer info available"
|
| 674 |
+
|
| 675 |
+
# Format key findings
|
| 676 |
+
key_findings = doc.get("key_findings", [])
|
| 677 |
+
if key_findings and isinstance(key_findings, list):
|
| 678 |
+
findings_text = "\n".join([f"• {finding.get('finding', '')}" for finding in key_findings[:3]])
|
| 679 |
+
if len(key_findings) > 3:
|
| 680 |
+
findings_text += f"\n... and {len(key_findings) - 3} more"
|
| 681 |
+
else:
|
| 682 |
+
findings_text = "No key findings available"
|
| 683 |
+
|
| 684 |
+
# Truncate summary for table display
|
| 685 |
+
if len(summary) > 200:
|
| 686 |
+
summary = summary[:200] + "..."
|
| 687 |
+
|
| 688 |
+
# Truncate follow-up email for table display
|
| 689 |
+
if len(follow_up_email) > 150:
|
| 690 |
+
follow_up_email = follow_up_email[:150] + "..."
|
| 691 |
+
|
| 692 |
+
data.append({
|
| 693 |
+
"Conversation ID": conversation_id,
|
| 694 |
+
"Customer Info": customer_info,
|
| 695 |
+
"Summary": summary,
|
| 696 |
+
"Key Findings": findings_text,
|
| 697 |
+
"Follow-up Email": follow_up_email
|
| 698 |
+
})
|
| 699 |
+
|
| 700 |
+
print(f"DEBUG: Returning {len(data)} filtered conversations")
|
| 701 |
+
return pd.DataFrame(data)
|
| 702 |
+
|
| 703 |
+
except Exception as e:
|
| 704 |
+
print(f"Error filtering conversations: {e}")
|
| 705 |
+
import traceback
|
| 706 |
+
traceback.print_exc()
|
| 707 |
+
return self.load_conversations()
|
| 708 |
+
|
| 709 |
+
def filter_conversations(self, search_term: str) -> pd.DataFrame:
|
| 710 |
+
"""Filter conversations based on search term."""
|
| 711 |
+
if not search_term or not search_term.strip():
|
| 712 |
+
return self.load_conversations()
|
| 713 |
+
|
| 714 |
+
try:
|
| 715 |
+
# Load all conversations first
|
| 716 |
+
all_conversations = self.load_conversations(limit=1000) # Load more for filtering
|
| 717 |
+
|
| 718 |
+
if all_conversations.empty:
|
| 719 |
+
return all_conversations
|
| 720 |
+
|
| 721 |
+
# Convert search term to lowercase for case-insensitive search
|
| 722 |
+
search_lower = search_term.lower().strip()
|
| 723 |
+
|
| 724 |
+
# Filter conversations based on search term
|
| 725 |
+
filtered_data = []
|
| 726 |
+
for _, row in all_conversations.iterrows():
|
| 727 |
+
# Search in conversation ID, customer info, summary, key findings, and follow-up email
|
| 728 |
+
conversation_id = str(row.get("Conversation ID", "")).lower()
|
| 729 |
+
customer_info = str(row.get("Customer Info", "")).lower()
|
| 730 |
+
summary = str(row.get("Summary", "")).lower()
|
| 731 |
+
key_findings = str(row.get("Key Findings", "")).lower()
|
| 732 |
+
follow_up_email = str(row.get("Follow-up Email", "")).lower()
|
| 733 |
+
|
| 734 |
+
# Check if search term matches any field
|
| 735 |
+
if (search_lower in conversation_id or
|
| 736 |
+
search_lower in customer_info or
|
| 737 |
+
search_lower in summary or
|
| 738 |
+
search_lower in key_findings or
|
| 739 |
+
search_lower in follow_up_email):
|
| 740 |
+
filtered_data.append(row.to_dict())
|
| 741 |
+
|
| 742 |
+
return pd.DataFrame(filtered_data)
|
| 743 |
+
|
| 744 |
+
except Exception as e:
|
| 745 |
+
print(f"Error filtering conversations: {e}")
|
| 746 |
+
return self.load_conversations()
|
| 747 |
+
|
| 748 |
+
def clear_conversation_search(self) -> Tuple[str, pd.DataFrame]:
|
| 749 |
+
"""Clear the search and show all conversations."""
|
| 750 |
+
return "", self.load_conversations()
|
| 751 |
+
|
| 752 |
+
def reset_ui_state(self) -> Tuple[str, str, str, str, pd.DataFrame]:
|
| 753 |
+
"""Reset the UI state to show all conversations and clear outputs."""
|
| 754 |
+
return "", "", "", "", self.load_conversations()
|
| 755 |
+
|
| 756 |
def launch(self, **kwargs):
|
| 757 |
"""Launch the Gradio interface."""
|
| 758 |
return self.interface.launch(**kwargs)
|
src/second_brain_online/config.py
CHANGED
|
@@ -44,11 +44,12 @@ class Settings(BaseSettings):
|
|
| 44 |
description="Name of the MongoDB database.",
|
| 45 |
)
|
| 46 |
MONGODB_COLLECTION_NAME: str = Field(
|
| 47 |
-
default="
|
| 48 |
description="Name of the MongoDB collection for RAG documents.",
|
| 49 |
)
|
| 50 |
MONGODB_URI: str = Field(
|
| 51 |
-
default="mongodb+srv://keshavchhaparia:bUSBXeVCGWDyQhDG@saaslabs.awtivxf.mongodb.net
|
|
|
|
| 52 |
description="Connection URI for the MongoDB Atlas instance.",
|
| 53 |
)
|
| 54 |
|
|
|
|
| 44 |
description="Name of the MongoDB database.",
|
| 45 |
)
|
| 46 |
MONGODB_COLLECTION_NAME: str = Field(
|
| 47 |
+
default="rag_conversations",
|
| 48 |
description="Name of the MongoDB collection for RAG documents.",
|
| 49 |
)
|
| 50 |
MONGODB_URI: str = Field(
|
| 51 |
+
default="mongodb+srv://keshavchhaparia:bUSBXeVCGWDyQhDG@saaslabs.awtivxf.mongodb.net/",
|
| 52 |
+
# default="mongodb+srv://contextdb:HOqIgSH01CoEiMb1@cluster0.d9cmff.mongodb.net/",
|
| 53 |
description="Connection URI for the MongoDB Atlas instance.",
|
| 54 |
)
|
| 55 |
|
temp_init.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
from . import agents, rag
|
| 2 |
-
|
| 3 |
-
# Optional import for evaluation - may cause issues in some environments
|
| 4 |
-
try:
|
| 5 |
-
from .evaluation import evaluate
|
| 6 |
-
__all__ = ["rag", "agents", "evaluate"]
|
| 7 |
-
except ImportError as e:
|
| 8 |
-
print(f"Warning: Could not import evaluation module: {e}")
|
| 9 |
-
__all__ = ["rag", "agents"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uv.lock
CHANGED
|
@@ -2344,6 +2344,7 @@ dependencies = [
|
|
| 2344 |
{ name = "pydantic" },
|
| 2345 |
{ name = "pydantic-settings" },
|
| 2346 |
{ name = "pymongo" },
|
|
|
|
| 2347 |
{ name = "smolagents" },
|
| 2348 |
]
|
| 2349 |
|
|
@@ -2369,6 +2370,7 @@ requires-dist = [
|
|
| 2369 |
{ name = "pydantic", specifier = ">=2.8.2" },
|
| 2370 |
{ name = "pydantic-settings", specifier = ">=2.7.0" },
|
| 2371 |
{ name = "pymongo", specifier = ">=4.10.1" },
|
|
|
|
| 2372 |
{ name = "smolagents", specifier = ">=1.4.1" },
|
| 2373 |
]
|
| 2374 |
|
|
|
|
| 2344 |
{ name = "pydantic" },
|
| 2345 |
{ name = "pydantic-settings" },
|
| 2346 |
{ name = "pymongo" },
|
| 2347 |
+
{ name = "sentence-transformers" },
|
| 2348 |
{ name = "smolagents" },
|
| 2349 |
]
|
| 2350 |
|
|
|
|
| 2370 |
{ name = "pydantic", specifier = ">=2.8.2" },
|
| 2371 |
{ name = "pydantic-settings", specifier = ">=2.7.0" },
|
| 2372 |
{ name = "pymongo", specifier = ">=4.10.1" },
|
| 2373 |
+
{ name = "sentence-transformers", specifier = ">=3.0.0" },
|
| 2374 |
{ name = "smolagents", specifier = ">=1.4.1" },
|
| 2375 |
]
|
| 2376 |
|
what_can_i_do.py
DELETED
|
@@ -1,60 +0,0 @@
|
|
| 1 |
-
import opik
|
| 2 |
-
from smolagents import Tool
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
class WhatCanIDoTool(Tool):
|
| 6 |
-
name = "what_can_i_do"
|
| 7 |
-
description = """Returns a comprehensive list of available capabilities and topics in the Second Brain system.
|
| 8 |
-
|
| 9 |
-
This tool should be used when:
|
| 10 |
-
- The user explicitly asks what the system can do
|
| 11 |
-
- The user asks about available features or capabilities
|
| 12 |
-
- The user seems unsure about what questions they can ask
|
| 13 |
-
- The user wants to explore the system's knowledge areas
|
| 14 |
-
|
| 15 |
-
This tool should NOT be used when:
|
| 16 |
-
- The user asks a specific technical question
|
| 17 |
-
- The user already knows what they want to learn about
|
| 18 |
-
- The question is about a specific topic covered in the knowledge base"""
|
| 19 |
-
|
| 20 |
-
inputs = {
|
| 21 |
-
"question": {
|
| 22 |
-
"type": "string",
|
| 23 |
-
"description": "The user's query about system capabilities. While this parameter is required, the function returns a standard capability list regardless of the specific question."
|
| 24 |
-
}
|
| 25 |
-
}
|
| 26 |
-
output_type = "string"
|
| 27 |
-
|
| 28 |
-
@opik.track(name="what_can_i_do")
|
| 29 |
-
def forward(self, question: str) -> str:
|
| 30 |
-
"""Returns a comprehensive list of available capabilities and topics in the Second Brain system."""
|
| 31 |
-
return """
|
| 32 |
-
You can ask questions about the content in your Second Brain, such as:
|
| 33 |
-
|
| 34 |
-
Architecture and Systems:
|
| 35 |
-
- What is the feature/training/inference (FTI) architecture?
|
| 36 |
-
- How do agentic systems work?
|
| 37 |
-
- Detail how does agent memory work in agentic applications?
|
| 38 |
-
|
| 39 |
-
LLM Technology:
|
| 40 |
-
- What are LLMs?
|
| 41 |
-
- What is BERT (Bidirectional Encoder Representations from Transformers)?
|
| 42 |
-
- Detail how does RLHF (Reinforcement Learning from Human Feedback) work?
|
| 43 |
-
- What are the top LLM frameworks for building applications?
|
| 44 |
-
- Write me a paragraph on how can I optimize LLMs during inference?
|
| 45 |
-
|
| 46 |
-
RAG and Document Processing:
|
| 47 |
-
- What tools are available for processing PDFs for LLMs and RAG?
|
| 48 |
-
- What's the difference between vector databases and vector indices?
|
| 49 |
-
- How does document chunk overlap affect RAG performance?
|
| 50 |
-
- What is chunk reranking and why is it important?
|
| 51 |
-
- What are advanced RAG techniques for optimization?
|
| 52 |
-
- How can RAG pipelines be evaluated?
|
| 53 |
-
|
| 54 |
-
Learning Resources:
|
| 55 |
-
- Can you recommend courses on LLMs and RAG?
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# Create an instance for backward compatibility
|
| 60 |
-
what_can_i_do = WhatCanIDoTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|