Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 3 |
from PIL import Image
|
| 4 |
-
import torch
|
| 5 |
-
import os
|
| 6 |
-
import subprocess
|
| 7 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
processor
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
return generated_text
|
| 41 |
|
| 42 |
-
def chatbot(image, text, history):
|
| 43 |
-
# Check if the image is uploaded
|
| 44 |
-
if image is None:
|
| 45 |
-
return history + [("Please upload an image first.", None)]
|
| 46 |
-
|
| 47 |
-
# Get response by processing the image and text
|
| 48 |
-
response = process_image_and_text(image, text)
|
| 49 |
-
|
| 50 |
-
# Append question and response to the chat history
|
| 51 |
-
history.append((text, response))
|
| 52 |
-
return history
|
| 53 |
-
|
| 54 |
-
# Define the Gradio interface
|
| 55 |
-
with gr.Blocks() as demo:
|
| 56 |
-
gr.Markdown("# Image Chatbot with Molmo-7B-4 Bit Quantized")
|
| 57 |
-
|
| 58 |
-
with gr.Row():
|
| 59 |
-
image_input = gr.Image(type="numpy")
|
| 60 |
-
chatbot_output = gr.Chatbot()
|
| 61 |
-
|
| 62 |
-
text_input = gr.Textbox(placeholder="Ask a question about the image...")
|
| 63 |
-
submit_button = gr.Button("Submit")
|
| 64 |
-
|
| 65 |
-
state = gr.State([])
|
| 66 |
-
|
| 67 |
-
# Connect the submit button and textbox to the chatbot function
|
| 68 |
-
submit_button.click(fn=chatbot, inputs=[image_input, text_input, state], outputs=chatbot_output)
|
| 69 |
-
text_input.submit(fn=chatbot, inputs=[image_input, text_input, state], outputs=chatbot_output)
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Load the model and processor
|
| 6 |
+
repo_name = "cyan2k/molmo-7B-O-bnb-4bit"
|
| 7 |
+
arguments = {
|
| 8 |
+
"device_map": "auto",
|
| 9 |
+
"torch_dtype": "auto",
|
| 10 |
+
"trust_remote_code": True,
|
| 11 |
+
"load_in_8bit": True # Use 8-bit for reduced memory footprint
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
# Load the processor and model
|
| 15 |
+
processor = AutoProcessor.from_pretrained(repo_name, **arguments)
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(repo_name, **arguments)
|
| 17 |
+
|
| 18 |
+
def describe_image(image):
|
| 19 |
+
# Process the uploaded image
|
| 20 |
+
inputs = processor.process(
|
| 21 |
+
images=[image],
|
| 22 |
+
text="Describe this image in great detail."
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Move inputs to model device
|
| 26 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()} # Removed unsqueeze(0) to keep batch size
|
| 27 |
+
|
| 28 |
+
# Generate output
|
| 29 |
+
output = model.generate_from_batch(
|
| 30 |
+
inputs,
|
| 31 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
| 32 |
+
tokenizer=processor.tokenizer,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Decode the generated tokens
|
| 36 |
+
generated_tokens = output[0, inputs["input_ids"].size(1):]
|
| 37 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 38 |
+
|
| 39 |
return generated_text
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
def gradio_app():
|
| 43 |
+
# Define Gradio interface
|
| 44 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 45 |
+
output_text = gr.Textbox(label="Image Description", interactive=False)
|
| 46 |
+
|
| 47 |
+
# Create Gradio interface
|
| 48 |
+
interface = gr.Interface(
|
| 49 |
+
fn=describe_image,
|
| 50 |
+
inputs=image_input,
|
| 51 |
+
outputs=output_text,
|
| 52 |
+
title="Image Description App",
|
| 53 |
+
description="Upload an image and get a detailed description using the Molmo 7B model"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Launch the interface
|
| 57 |
+
interface.launch()
|
| 58 |
+
|
| 59 |
+
# Launch the Gradio app
|
| 60 |
+
gradio_app()
|