chrismay commited on
Commit
c93c941
·
verified ·
1 Parent(s): 617f0df

switching to streamlit for demonstration purposes

Browse files
Files changed (1) hide show
  1. app.py +36 -13
app.py CHANGED
@@ -1,19 +1,42 @@
1
- import streamlit as st
 
2
  from transformers import pipeline
3
- import gc
 
4
 
5
- st.header("Sentiment-demo-app")
6
- st.subheader("Please be patient and wait up to a minute until the demo app is loaded.")
7
- st.caption("This is a very simple demo application for a zero-shot classification pipeline to classify positive, neutral, or negative sentiment for a short text. Enter your text in the box below and press CTRl+ENTER to run the model.")
8
 
9
- pipe = pipeline("text-classification", model='tabularisai/multilingual-sentiment-analysis') #"zero-shot-classification" model='facebook/bart-large-mnli')
 
 
10
 
11
- texts = st.text_area('Enter text here!')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  #candidate_labels = ['Positive', 'Neutral', 'Negative']
13
- result = pipe(texts)
14
 
15
- if text:
16
- out = pipe(text, result)
17
- st.json(out)
18
- del out
19
- gc.collect()
 
1
+ #import streamlit as st
2
+ import gradio as gr
3
  from transformers import pipeline
4
+ from huggingface_hub import InferenceClient
5
+ #import gc
6
 
7
+ #st.header("Sentiment-demo-app")
8
+ #st.subheader("Please be patient and wait up to a minute until the demo app is loaded.")
9
+ #st.caption("This is a very simple demo application for a zero-shot classification pipeline to classify positive, neutral, or negative sentiment for a short text. Enter your text in the box below and press CTRl+ENTER to run the model.")
10
 
11
+ title = "Sentiment-demo-app"
12
+ description = """This is a very simple demo application for a zero-shot classification pipeline to classify positive, neutral, or negative sentiment for a short text. Enter your text in the box below and press CTRl+ENTER to run the model.
13
+ Please be patient until the demo app is loaded. """
14
 
15
+ sentiment = pipeline("text-classification", model='tabularisai/multilingual-sentiment-analysis') #"zero-shot-classification" model='facebook/bart-large-mnli')
16
+
17
+ def get_sentiment(text):
18
+ output = sentiment(text)
19
+ return f'The sentence was classified as "{output[0]["label"]}" with {output[0]["score"]*100}% confidence'
20
+
21
+ demo = gr.Interface(
22
+ fn=get_sentiment,
23
+ inputs="text",
24
+ outputs="text",
25
+ title=title,
26
+ description=description
27
+ )
28
+
29
+
30
+ if __name__ == "__main__":
31
+ demo.launch()
32
+
33
+
34
+ #texts = st.text_area('Enter text here!')
35
  #candidate_labels = ['Positive', 'Neutral', 'Negative']
36
+ #result = pipe(texts)
37
 
38
+ #if text:
39
+ # out = pipe(text, result)
40
+ # st.json(out)
41
+ # del out
42
+ # gc.collect()