Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # load speech translation checkpoint | |
| asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device) | |
| # load text-to-speech checkpoint and speaker embeddings | |
| model_id = "ckandemir/speecht5_finetuned_voxpopuli_fr" # update with your model id | |
| # pipe = pipeline("automatic-speech-recognition", model=model_id) | |
| model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
| vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
| processor = SpeechT5Processor.from_pretrained(model_id) | |
| replacements = [ | |
| ("à", "a"), ("â", "a"), | |
| ("ç", "c"), | |
| ("é", "e"), ("è", "e"), ("ê", "e"), ("ë", "e"), | |
| ("î", "i"), ("ï", "i"), | |
| ("ô", "o"), | |
| ("ù", "u"), ("û", "u"), | |
| ] | |
| def cleanup_text(text): | |
| for src, dst in replacements: | |
| text = text.replace(src, dst) | |
| return text | |
| def translate(audio): | |
| outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "french"}) | |
| return outputs["text"] | |
| def synthesise(text): | |
| text = cleanup_text(text) | |
| inputs = processor(text=text, return_tensors="pt") | |
| speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
| return speech.cpu() | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| synthesised_speech = synthesise(translated_text) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| title = "Cascaded STST" | |
| description = """ | |
| Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [ckandemir/speecht5_finetuned_voxpopuli_fr"](https://huggingface.co/ckandemir/speecht5_finetuned_voxpopuli_fr) checkpoint for text-to-speech, which is based on Microsoft's | |
| [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in French Audio dataset: | |
|  | |
| """ | |
| demo = gr.Blocks() | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description, | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| examples=[["./example.wav"]], | |
| title=title, | |
| description=description, | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
| demo.launch() | |