Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from byaldi import RAGMultiModalModel
|
| 5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 6 |
+
from qwen_vl_utils import process_vision_info
|
| 7 |
+
|
| 8 |
+
# Check for CUDA availability
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
print(f"Using device: {device}")
|
| 11 |
+
|
| 12 |
+
# Caching the model loading
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_rag_model():
|
| 15 |
+
return RAGMultiModalModel.from_pretrained("vidore/colpali")
|
| 16 |
+
|
| 17 |
+
@st.cache_resource
|
| 18 |
+
def load_qwen_model():
|
| 19 |
+
return Qwen2VLForConditionalGeneration.from_pretrained(
|
| 20 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
torch_dtype=torch.bfloat16
|
| 23 |
+
).to(device).eval()
|
| 24 |
+
|
| 25 |
+
@st.cache_resource
|
| 26 |
+
def load_processor():
|
| 27 |
+
return AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
| 28 |
+
|
| 29 |
+
# Load models
|
| 30 |
+
RAG = load_rag_model()
|
| 31 |
+
model = load_qwen_model()
|
| 32 |
+
processor = load_processor()
|
| 33 |
+
|
| 34 |
+
st.title("Multimodal RAG App")
|
| 35 |
+
|
| 36 |
+
st.warning("⚠️ Disclaimer: This app is currently running on CPU, which may result in slow processing times. For optimal performance, download and run the app locally on a machine with GPU support.")
|
| 37 |
+
|
| 38 |
+
# Add download link
|
| 39 |
+
st.markdown("[📥 Download the app code](https://huggingface.co/spaces/clayton07/colpali-qwen2-ocr/blob/main/app.py)")
|
| 40 |
+
|
| 41 |
+
# Initialize session state for tracking if index is created
|
| 42 |
+
if 'index_created' not in st.session_state:
|
| 43 |
+
st.session_state.index_created = False
|
| 44 |
+
|
| 45 |
+
# File uploader
|
| 46 |
+
image_source = st.radio("Choose image source:", ("Upload an image", "Use example image"))
|
| 47 |
+
|
| 48 |
+
if image_source == "Upload an image":
|
| 49 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["png", "jpg", "jpeg"])
|
| 50 |
+
else:
|
| 51 |
+
# Use a pre-defined example image
|
| 52 |
+
example_image_path = "hindi-qp.jpg"
|
| 53 |
+
uploaded_file = example_image_path
|
| 54 |
+
|
| 55 |
+
if uploaded_file is not None:
|
| 56 |
+
# If using the example image, no need to save it
|
| 57 |
+
if image_source == "Upload an image":
|
| 58 |
+
with open("temp_image.png", "wb") as f:
|
| 59 |
+
f.write(uploaded_file.getvalue())
|
| 60 |
+
image_path = "temp_image.png"
|
| 61 |
+
else:
|
| 62 |
+
image_path = uploaded_file
|
| 63 |
+
|
| 64 |
+
if not st.session_state.index_created:
|
| 65 |
+
# Initialize the index for the first image
|
| 66 |
+
RAG.index(
|
| 67 |
+
input_path=image_path,
|
| 68 |
+
index_name="temp_index",
|
| 69 |
+
store_collection_with_index=False,
|
| 70 |
+
overwrite=True
|
| 71 |
+
)
|
| 72 |
+
st.session_state.index_created = True
|
| 73 |
+
else:
|
| 74 |
+
# Add to the existing index for subsequent images
|
| 75 |
+
RAG.add_to_index(
|
| 76 |
+
input_item=image_path,
|
| 77 |
+
store_collection_with_index=False
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
| 81 |
+
|
| 82 |
+
# Text query input
|
| 83 |
+
text_query = st.text_input("Enter your query about the image:")
|
| 84 |
+
|
| 85 |
+
if text_query:
|
| 86 |
+
# Perform RAG search
|
| 87 |
+
results = RAG.search(text_query, k=2)
|
| 88 |
+
|
| 89 |
+
# Process with Qwen2VL model
|
| 90 |
+
messages = [
|
| 91 |
+
{
|
| 92 |
+
"role": "user",
|
| 93 |
+
"content": [
|
| 94 |
+
{
|
| 95 |
+
"type": "image",
|
| 96 |
+
"image": image_path,
|
| 97 |
+
},
|
| 98 |
+
{"type": "text", "text": text_query},
|
| 99 |
+
],
|
| 100 |
+
}
|
| 101 |
+
]
|
| 102 |
+
text = processor.apply_chat_template(
|
| 103 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 104 |
+
)
|
| 105 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 106 |
+
inputs = processor(
|
| 107 |
+
text=[text],
|
| 108 |
+
images=image_inputs,
|
| 109 |
+
videos=video_inputs,
|
| 110 |
+
padding=True,
|
| 111 |
+
return_tensors="pt",
|
| 112 |
+
)
|
| 113 |
+
inputs = inputs.to(device)
|
| 114 |
+
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
| 115 |
+
generated_ids_trimmed = [
|
| 116 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 117 |
+
]
|
| 118 |
+
output_text = processor.batch_decode(
|
| 119 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Display results
|
| 123 |
+
st.subheader("Results:")
|
| 124 |
+
st.write(output_text[0])
|
| 125 |
+
|
| 126 |
+
# Clean up temporary file
|
| 127 |
+
if image_source == "Upload an image":
|
| 128 |
+
os.remove("temp_image.png")
|
| 129 |
+
else:
|
| 130 |
+
st.write("Please upload an image to get started.")
|