Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,27 +17,21 @@ model.eval()
|
|
| 17 |
print("Model and processor loaded successfully.")
|
| 18 |
|
| 19 |
# --- 2. MODIFIED Define the Explainability (Grad-CAM) Function ---
|
| 20 |
-
# This function generates the heatmap showing which parts of the image the model focused on.
|
| 21 |
def generate_heatmap(image_tensor, original_image, target_class_index):
|
| 22 |
-
#
|
| 23 |
-
# The original code assumed a ConvNeXT model. This model is a Swin Transformer.
|
| 24 |
-
# We now target the final layer normalization of the Swin Transformer's main body,
|
| 25 |
-
# which is a standard and effective layer for Grad-CAM on this architecture.
|
| 26 |
target_layer = model.swin.layernorm
|
| 27 |
|
| 28 |
# Initialize LayerGradCam
|
| 29 |
lgc = LayerGradCam(model, target_layer)
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
# The baselines
|
| 33 |
-
|
| 34 |
-
attributions = lgc.attribute(image_tensor, target=target_class_index,
|
| 35 |
|
| 36 |
-
# The
|
| 37 |
-
# We take the mean across the color channels and format it correctly.
|
| 38 |
heatmap = np.transpose(attributions.squeeze(0).cpu().detach().numpy(), (1, 2, 0))
|
| 39 |
|
| 40 |
-
# Use Captum's visualization tool to overlay the heatmap on the original image.
|
| 41 |
visualized_image, _ = viz.visualize_image_attr(
|
| 42 |
heatmap,
|
| 43 |
np.array(original_image),
|
|
|
|
| 17 |
print("Model and processor loaded successfully.")
|
| 18 |
|
| 19 |
# --- 2. MODIFIED Define the Explainability (Grad-CAM) Function ---
|
|
|
|
| 20 |
def generate_heatmap(image_tensor, original_image, target_class_index):
|
| 21 |
+
# This part is correct from our last fix.
|
|
|
|
|
|
|
|
|
|
| 22 |
target_layer = model.swin.layernorm
|
| 23 |
|
| 24 |
# Initialize LayerGradCam
|
| 25 |
lgc = LayerGradCam(model, target_layer)
|
| 26 |
|
| 27 |
+
# --- THIS IS THE FIX ---
|
| 28 |
+
# The 'baselines' argument is not used by LayerGradCam, so we remove it.
|
| 29 |
+
# The call is now simpler and correct for this specific method.
|
| 30 |
+
attributions = lgc.attribute(image_tensor, target=target_class_index, relu_attributions=True)
|
| 31 |
|
| 32 |
+
# The rest of the function remains the same.
|
|
|
|
| 33 |
heatmap = np.transpose(attributions.squeeze(0).cpu().detach().numpy(), (1, 2, 0))
|
| 34 |
|
|
|
|
| 35 |
visualized_image, _ = viz.visualize_image_attr(
|
| 36 |
heatmap,
|
| 37 |
np.array(original_image),
|