| from pathlib import Path | |
| from typing import Any | |
| from optimum.intel.openvino import OVDiffusionPipeline | |
| from optimum.intel.openvino.modeling_diffusion import ( | |
| OVModelVae, | |
| OVModelVaeDecoder, | |
| OVModelVaeEncoder, | |
| ) | |
| from backend.device import is_openvino_device | |
| from backend.tiny_autoencoder import get_tiny_autoencoder_repo_id | |
| from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO | |
| from paths import get_base_folder_name | |
| if is_openvino_device(): | |
| from huggingface_hub import snapshot_download | |
| from optimum.intel.openvino.modeling_diffusion import ( | |
| OVBaseModel, | |
| OVStableDiffusionImg2ImgPipeline, | |
| OVStableDiffusionPipeline, | |
| OVStableDiffusionXLImg2ImgPipeline, | |
| OVStableDiffusionXLPipeline, | |
| ) | |
| def ov_load_tiny_autoencoder( | |
| pipeline: Any, | |
| use_local_model: bool = False, | |
| ): | |
| taesd_dir = snapshot_download( | |
| repo_id=get_tiny_autoencoder_repo_id(pipeline.__class__.__name__), | |
| local_files_only=use_local_model, | |
| ) | |
| vae_decoder = OVModelVaeDecoder( | |
| model=OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), | |
| parent_pipeline=pipeline, | |
| model_name="vae_decoder", | |
| ) | |
| vae_encoder = OVModelVaeEncoder( | |
| model=OVBaseModel.load_model(f"{taesd_dir}/vae_encoder/openvino_model.xml"), | |
| parent_pipeline=pipeline, | |
| model_name="vae_encoder", | |
| ) | |
| pipeline.vae = OVModelVae( | |
| decoder=vae_decoder, | |
| encoder=vae_encoder, | |
| ) | |
| pipeline.vae.config.scaling_factor = 1.0 | |
| def get_ov_text_to_image_pipeline( | |
| model_id: str = LCM_DEFAULT_MODEL_OPENVINO, | |
| use_local_model: bool = False, | |
| ) -> Any: | |
| if "xl" in get_base_folder_name(model_id).lower(): | |
| pipeline = OVStableDiffusionXLPipeline.from_pretrained( | |
| model_id, | |
| local_files_only=use_local_model, | |
| ov_config={"CACHE_DIR": ""}, | |
| device=DEVICE.upper(), | |
| ) | |
| else: | |
| pipeline = OVStableDiffusionPipeline.from_pretrained( | |
| model_id, | |
| local_files_only=use_local_model, | |
| ov_config={"CACHE_DIR": ""}, | |
| device=DEVICE.upper(), | |
| ) | |
| return pipeline | |
| def get_ov_image_to_image_pipeline( | |
| model_id: str = LCM_DEFAULT_MODEL_OPENVINO, | |
| use_local_model: bool = False, | |
| ) -> Any: | |
| if "xl" in get_base_folder_name(model_id).lower(): | |
| pipeline = OVStableDiffusionXLImg2ImgPipeline.from_pretrained( | |
| model_id, | |
| local_files_only=use_local_model, | |
| ov_config={"CACHE_DIR": ""}, | |
| device=DEVICE.upper(), | |
| ) | |
| else: | |
| pipeline = OVStableDiffusionImg2ImgPipeline.from_pretrained( | |
| model_id, | |
| local_files_only=use_local_model, | |
| ov_config={"CACHE_DIR": ""}, | |
| device=DEVICE.upper(), | |
| ) | |
| return pipeline | |
| def get_ov_diffusion_pipeline( | |
| model_id: str, | |
| use_local_model: bool = False, | |
| ) -> Any: | |
| pipeline = OVDiffusionPipeline.from_pretrained( | |
| model_id, | |
| local_files_only=use_local_model, | |
| ov_config={"CACHE_DIR": ""}, | |
| device=DEVICE.upper(), | |
| ) | |
| return pipeline | |