Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,8 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 4 |
from numpy import exp
|
| 5 |
-
|
|
|
|
| 6 |
def softmax(vector):
|
| 7 |
e = exp(vector)
|
| 8 |
return e / e.sum()
|
|
@@ -10,68 +11,107 @@ def softmax(vector):
|
|
| 10 |
|
| 11 |
models=[
|
| 12 |
"Nahrawy/AIorNot",
|
| 13 |
-
"arnolfokam/ai-generated-image-detector",
|
| 14 |
"umm-maybe/AI-image-detector",
|
| 15 |
-
|
| 16 |
|
|
|
|
|
|
|
| 17 |
def aiornot0(image):
|
| 18 |
labels = ["Real", "AI"]
|
| 19 |
mod=models[0]
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
input =
|
| 23 |
with torch.no_grad():
|
| 24 |
-
outputs =
|
| 25 |
-
print (outputs)
|
| 26 |
logits = outputs.logits
|
| 27 |
-
print (logits)
|
| 28 |
probability = softmax(logits)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
prediction = logits.argmax(-1).item()
|
| 32 |
-
label = labels[prediction]
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def aiornot1(image):
|
| 35 |
labels = ["Real", "AI"]
|
| 36 |
mod=models[1]
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
input =
|
| 40 |
with torch.no_grad():
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
prediction = logits.argmax(-1).item()
|
| 46 |
-
label = labels[prediction]
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def aiornot2(image):
|
| 49 |
-
labels = ["
|
| 50 |
mod=models[2]
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
input =
|
| 54 |
with torch.no_grad():
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
prediction = logits.argmax(-1).item()
|
| 60 |
-
label = labels[prediction]
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
btn.click(aiornot1,[inp],outp1)
|
| 75 |
-
btn.click(aiornot2,[inp],outp2)
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 4 |
from numpy import exp
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
def softmax(vector):
|
| 8 |
e = exp(vector)
|
| 9 |
return e / e.sum()
|
|
|
|
| 11 |
|
| 12 |
models=[
|
| 13 |
"Nahrawy/AIorNot",
|
|
|
|
| 14 |
"umm-maybe/AI-image-detector",
|
| 15 |
+
"arnolfokam/ai-generated-image-detector",
|
| 16 |
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
def aiornot0(image):
|
| 20 |
labels = ["Real", "AI"]
|
| 21 |
mod=models[0]
|
| 22 |
+
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
| 23 |
+
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
| 24 |
+
input = feature_extractor0(image, return_tensors="pt")
|
| 25 |
with torch.no_grad():
|
| 26 |
+
outputs = model0(**input)
|
|
|
|
| 27 |
logits = outputs.logits
|
|
|
|
| 28 |
probability = softmax(logits)
|
| 29 |
+
px = pd.DataFrame(probability.numpy())
|
|
|
|
| 30 |
prediction = logits.argmax(-1).item()
|
| 31 |
+
label = labels[prediction]
|
| 32 |
+
html_out = f"""
|
| 33 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
| 34 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
| 35 |
+
<br>
|
| 36 |
+
Probabilites:<br>
|
| 37 |
+
Real: {px[0][0]}<br>
|
| 38 |
+
AI: {px[1][0]}"""
|
| 39 |
+
results = {}
|
| 40 |
+
for idx,result in enumerate(px):
|
| 41 |
+
results[labels[idx]] = px[idx][0]
|
| 42 |
+
#results[labels['label']] = result['score']
|
| 43 |
+
return gr.HTML.update(html_out),results
|
| 44 |
def aiornot1(image):
|
| 45 |
labels = ["Real", "AI"]
|
| 46 |
mod=models[1]
|
| 47 |
+
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
| 48 |
+
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
| 49 |
+
input = feature_extractor1(image, return_tensors="pt")
|
| 50 |
with torch.no_grad():
|
| 51 |
+
outputs = model1(**input)
|
| 52 |
+
logits = outputs.logits
|
| 53 |
+
probability = softmax(logits)
|
| 54 |
+
px = pd.DataFrame(probability.numpy())
|
| 55 |
prediction = logits.argmax(-1).item()
|
| 56 |
+
label = labels[prediction]
|
| 57 |
+
html_out = f"""
|
| 58 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
| 59 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
| 60 |
+
<br>
|
| 61 |
+
Probabilites:<br>
|
| 62 |
+
Real: {px[0][0]}<br>
|
| 63 |
+
AI: {px[1][0]}"""
|
| 64 |
+
results = {}
|
| 65 |
+
for idx,result in enumerate(px):
|
| 66 |
+
results[labels[idx]] = px[idx][0]
|
| 67 |
+
#results[labels['label']] = result['score']
|
| 68 |
+
return gr.HTML.update(html_out),results
|
| 69 |
def aiornot2(image):
|
| 70 |
+
labels = ["AI", "Real"]
|
| 71 |
mod=models[2]
|
| 72 |
+
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
| 73 |
+
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
| 74 |
+
input = feature_extractor2(image, return_tensors="pt")
|
| 75 |
with torch.no_grad():
|
| 76 |
+
outputs = model2(**input)
|
| 77 |
+
logits = outputs.logits
|
| 78 |
+
probability = softmax(logits)
|
| 79 |
+
px = pd.DataFrame(probability.numpy())
|
| 80 |
prediction = logits.argmax(-1).item()
|
| 81 |
+
label = labels[prediction]
|
| 82 |
+
html_out = f"""
|
| 83 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
| 84 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
| 85 |
+
<br>
|
| 86 |
+
Probabilites:<br>
|
| 87 |
+
Real: {px[1][0]}<br>
|
| 88 |
+
AI: {px[0][0]}"""
|
| 89 |
+
|
| 90 |
+
results = {}
|
| 91 |
+
for idx,result in enumerate(px):
|
| 92 |
+
results[labels[idx]] = px[idx][0]
|
| 93 |
+
#results[labels['label']] = result['score']
|
| 94 |
+
return gr.HTML.update(html_out),results
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
with gr.Blocks() as app:
|
| 97 |
+
with gr.Column():
|
| 98 |
+
inp = gr.Pil()
|
| 99 |
+
btn = gr.Button()
|
| 100 |
+
with gr.Group():
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Box():
|
| 103 |
+
lab0 = gr.HTML(f"""<b>Testing on Model: {models[0]}</b>""")
|
| 104 |
+
outp0 = gr.HTML("""""")
|
| 105 |
+
n_out0=gr.Label(label="Output")
|
| 106 |
+
with gr.Box():
|
| 107 |
+
lab1 = gr.HTML(f"""<b>Testing on Model: {models[1]}</b>""")
|
| 108 |
+
outp1 = gr.HTML("""""")
|
| 109 |
+
n_out1=gr.Label(label="Output")
|
| 110 |
+
with gr.Box():
|
| 111 |
+
lab2 = gr.HTML(f"""<b>Testing on Model: {models[2]}</b>""")
|
| 112 |
+
outp2 = gr.HTML("""""")
|
| 113 |
+
n_out2=gr.Label(label="Output")
|
| 114 |
+
btn.click(aiornot0,[inp],[outp0,n_out0])
|
| 115 |
+
btn.click(aiornot1,[inp],[outp1,n_out1])
|
| 116 |
+
btn.click(aiornot2,[inp],[outp2,n_out2])
|
| 117 |
+
app.launch(enable_queue=False)
|