Spaces:
Runtime error
Runtime error
Wonderplex
commited on
sotopia-pi prompt template fix (#66)
Browse files
sotopia_pi_generate.py → sotopia_generate.py
RENAMED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
from typing import TypeVar
|
| 4 |
from functools import cache
|
| 5 |
import logging
|
|
|
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
@@ -22,9 +23,10 @@ from langchain.prompts import (
|
|
| 22 |
PromptTemplate,
|
| 23 |
)
|
| 24 |
from langchain.schema import BaseOutputParser, OutputParserException
|
|
|
|
|
|
|
| 25 |
from message_classes import ActionType, AgentAction
|
| 26 |
from utils import format_docstring
|
| 27 |
-
|
| 28 |
from langchain_callback_handler import LoggingCallbackHandler
|
| 29 |
|
| 30 |
HF_TOKEN_KEY_FILE="./hf_token.key"
|
|
@@ -89,7 +91,7 @@ def prepare_model(model_name):
|
|
| 89 |
model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 91 |
cache_dir="./.cache",
|
| 92 |
-
device_map='cuda'
|
| 93 |
)
|
| 94 |
model = PeftModel.from_pretrained(model, model_name).to("cuda")
|
| 95 |
|
|
@@ -98,7 +100,7 @@ def prepare_model(model_name):
|
|
| 98 |
model = AutoModelForCausalLM.from_pretrained(
|
| 99 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 100 |
cache_dir="./.cache",
|
| 101 |
-
device_map='cuda',
|
| 102 |
quantization_config=BitsAndBytesConfig(
|
| 103 |
load_in_4bit=True,
|
| 104 |
bnb_4bit_use_double_quant=True,
|
|
@@ -114,7 +116,7 @@ def prepare_model(model_name):
|
|
| 114 |
model = AutoModelForCausalLM.from_pretrained(
|
| 115 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 116 |
cache_dir="./.cache",
|
| 117 |
-
device_map='cuda'
|
| 118 |
)
|
| 119 |
|
| 120 |
else:
|
|
@@ -131,7 +133,7 @@ def obtain_chain_hf(
|
|
| 131 |
max_tokens: int = 2700
|
| 132 |
) -> LLMChain:
|
| 133 |
human_message_prompt = HumanMessagePromptTemplate(
|
| 134 |
-
prompt=PromptTemplate(template=template, input_variables=input_variables)
|
| 135 |
)
|
| 136 |
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
|
| 137 |
model, tokenizer = prepare_model(model_name)
|
|
@@ -148,6 +150,7 @@ def obtain_chain_hf(
|
|
| 148 |
chain = LLMChain(llm=hf, prompt=chat_prompt_template)
|
| 149 |
return chain
|
| 150 |
|
|
|
|
| 151 |
def generate(
|
| 152 |
model_name: str,
|
| 153 |
template: str,
|
|
|
|
| 3 |
from typing import TypeVar
|
| 4 |
from functools import cache
|
| 5 |
import logging
|
| 6 |
+
import json
|
| 7 |
|
| 8 |
import torch
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
| 23 |
PromptTemplate,
|
| 24 |
)
|
| 25 |
from langchain.schema import BaseOutputParser, OutputParserException
|
| 26 |
+
import spaces
|
| 27 |
+
|
| 28 |
from message_classes import ActionType, AgentAction
|
| 29 |
from utils import format_docstring
|
|
|
|
| 30 |
from langchain_callback_handler import LoggingCallbackHandler
|
| 31 |
|
| 32 |
HF_TOKEN_KEY_FILE="./hf_token.key"
|
|
|
|
| 91 |
model = AutoModelForCausalLM.from_pretrained(
|
| 92 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 93 |
cache_dir="./.cache",
|
| 94 |
+
# device_map='cuda'
|
| 95 |
)
|
| 96 |
model = PeftModel.from_pretrained(model, model_name).to("cuda")
|
| 97 |
|
|
|
|
| 100 |
model = AutoModelForCausalLM.from_pretrained(
|
| 101 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 102 |
cache_dir="./.cache",
|
| 103 |
+
# device_map='cuda',
|
| 104 |
quantization_config=BitsAndBytesConfig(
|
| 105 |
load_in_4bit=True,
|
| 106 |
bnb_4bit_use_double_quant=True,
|
|
|
|
| 116 |
model = AutoModelForCausalLM.from_pretrained(
|
| 117 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 118 |
cache_dir="./.cache",
|
| 119 |
+
# device_map='cuda'
|
| 120 |
)
|
| 121 |
|
| 122 |
else:
|
|
|
|
| 133 |
max_tokens: int = 2700
|
| 134 |
) -> LLMChain:
|
| 135 |
human_message_prompt = HumanMessagePromptTemplate(
|
| 136 |
+
prompt=PromptTemplate(template="[INST] " + template + " [/INST]", input_variables=input_variables)
|
| 137 |
)
|
| 138 |
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
|
| 139 |
model, tokenizer = prepare_model(model_name)
|
|
|
|
| 150 |
chain = LLMChain(llm=hf, prompt=chat_prompt_template)
|
| 151 |
return chain
|
| 152 |
|
| 153 |
+
|
| 154 |
def generate(
|
| 155 |
model_name: str,
|
| 156 |
template: str,
|
sotopia_space/chat.py
CHANGED
|
@@ -6,7 +6,7 @@ from typing import Literal
|
|
| 6 |
import json
|
| 7 |
from collections import defaultdict
|
| 8 |
from utils import Environment, Agent, get_context_prompt, dialogue_history_prompt
|
| 9 |
-
from
|
| 10 |
from sotopia_space.constants import MODEL_OPTIONS
|
| 11 |
|
| 12 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
|
|
|
| 6 |
import json
|
| 7 |
from collections import defaultdict
|
| 8 |
from utils import Environment, Agent, get_context_prompt, dialogue_history_prompt
|
| 9 |
+
from sotopia_generate import prepare_model, generate_action
|
| 10 |
from sotopia_space.constants import MODEL_OPTIONS
|
| 11 |
|
| 12 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
sotopia_space/constants.py
CHANGED
|
@@ -5,7 +5,7 @@ MODEL_OPTIONS = [
|
|
| 5 |
"cmu-lti/sotopia-pi-mistral-7b-BC_SR",
|
| 6 |
"cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit",
|
| 7 |
"mistralai/Mistral-7B-Instruct-v0.1"
|
| 8 |
-
# "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 9 |
# "togethercomputer/llama-2-7b-chat",
|
| 10 |
# "togethercomputer/llama-2-70b-chat",
|
| 11 |
# "togethercomputer/mpt-30b-chat",
|
|
|
|
| 5 |
"cmu-lti/sotopia-pi-mistral-7b-BC_SR",
|
| 6 |
"cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit",
|
| 7 |
"mistralai/Mistral-7B-Instruct-v0.1"
|
| 8 |
+
# "mistralai/Mixtral-8x7B-Instruct-v0.1", # TODO: Add these model
|
| 9 |
# "togethercomputer/llama-2-7b-chat",
|
| 10 |
# "togethercomputer/llama-2-70b-chat",
|
| 11 |
# "togethercomputer/mpt-30b-chat",
|