Update app.py
Browse files
app.py
CHANGED
|
@@ -102,13 +102,10 @@ def filter_semantically_similar_texts_by_embedding(df, mode, embedding_field='em
|
|
| 102 |
|
| 103 |
def search_kpi(kpi_query, kpi_count, mode):
|
| 104 |
if mode == "BGE":
|
| 105 |
-
print("BGE 검색 시작")
|
| 106 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 107 |
elif mode == "SBERT-snunlp":
|
| 108 |
-
print("SBERT-snunlp 검색 시작")
|
| 109 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 110 |
else:
|
| 111 |
-
print("SBERT-jhgan 검색 시작")
|
| 112 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 113 |
|
| 114 |
|
|
@@ -135,13 +132,10 @@ def search_kpi(kpi_query, kpi_count, mode):
|
|
| 135 |
|
| 136 |
def search_kpi_one(kpi_query, kpi_count, mode):
|
| 137 |
if mode == "BGE":
|
| 138 |
-
print("BGE 검색 시작")
|
| 139 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 140 |
elif mode == "SBERT-snunlp":
|
| 141 |
-
print("SBERT-snunlp 검색 시작")
|
| 142 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 143 |
else:
|
| 144 |
-
print("SBERT-jhgan 검색 시작")
|
| 145 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 146 |
|
| 147 |
# 메타데이터 + 점수 추출
|
|
@@ -232,11 +226,10 @@ def generate_excel(df1, df2, df3, kpi_list1, kpi_list2, kpi_list3, kpi_query):
|
|
| 232 |
if kpi_list:
|
| 233 |
indices = [int(i) - 1 for i in kpi_list] # -1 보정
|
| 234 |
filtered = df.iloc[indices].copy()
|
| 235 |
-
filtered["출처"] = model_name
|
| 236 |
return filtered
|
| 237 |
else:
|
| 238 |
# 선택된 KPI 없을 때: 빈 DataFrame 반환
|
| 239 |
-
return pd.DataFrame(columns=list(df.columns)
|
| 240 |
|
| 241 |
# 인덱스(-1 보정)로 DataFrame 필터링
|
| 242 |
#filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
|
|
|
|
| 102 |
|
| 103 |
def search_kpi(kpi_query, kpi_count, mode):
|
| 104 |
if mode == "BGE":
|
|
|
|
| 105 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 106 |
elif mode == "SBERT-snunlp":
|
|
|
|
| 107 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 108 |
else:
|
|
|
|
| 109 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 110 |
|
| 111 |
|
|
|
|
| 132 |
|
| 133 |
def search_kpi_one(kpi_query, kpi_count, mode):
|
| 134 |
if mode == "BGE":
|
|
|
|
| 135 |
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 136 |
elif mode == "SBERT-snunlp":
|
|
|
|
| 137 |
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 138 |
else:
|
|
|
|
| 139 |
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 140 |
|
| 141 |
# 메타데이터 + 점수 추출
|
|
|
|
| 226 |
if kpi_list:
|
| 227 |
indices = [int(i) - 1 for i in kpi_list] # -1 보정
|
| 228 |
filtered = df.iloc[indices].copy()
|
|
|
|
| 229 |
return filtered
|
| 230 |
else:
|
| 231 |
# 선택된 KPI 없을 때: 빈 DataFrame 반환
|
| 232 |
+
return pd.DataFrame(columns=list(df.columns))
|
| 233 |
|
| 234 |
# 인덱스(-1 보정)로 DataFrame 필터링
|
| 235 |
#filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
|