Spaces:
Running
Running
File size: 14,800 Bytes
2aaba47 6290d3f 18c93c9 6290d3f 107f99d 18c93c9 107f99d 18c93c9 107f99d 18c93c9 107f99d 18c93c9 107f99d 6290d3f 2aaba47 6290d3f 2aaba47 6290d3f 2aaba47 6290d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import spaces
import os
import sys
import tempfile
import shutil
from PIL import Image, ImageDraw, ImageFont, ImageOps
import fitz
import re
import warnings
import numpy as np
import base64
from io import StringIO, BytesIO
# 模型路径配置
# 方式1: 使用在线模型(默认)
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR'
# 方式2: 使用本地下载的模型(推荐)
# 将模型下载到本地后,修改为本地路径,例如:
# MODEL_PATH = './models/DeepSeek-OCR' # 本地模型路径
# MODEL_PATH = 'E:/hugging_face/models/DeepSeek-OCR' # 或使用绝对路径
# 如果本地路径不存在,则使用在线模型
if not os.path.exists(MODEL_PATH):
print(f"本地模型路径不存在: {MODEL_PATH}")
print("将使用在线模型: deepseek-ai/DeepSeek-OCR")
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR'
else:
print(f"使用本地模型: {MODEL_PATH}")
# Auto-detect device (GPU if available, else CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
print(f"使用设备: {device}, 数据类型: {torch_dtype}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
# 加载模型
if device == "cpu":
# CPU 模式:使用 float32 避免类型不匹配
print("⚠️ CPU 模式:强制使用 float32(bfloat16 在 CPU 上不完全支持)")
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
use_safetensors=True,
torch_dtype=torch.float32, # CPU 必须使用 float32
low_cpu_mem_usage=True
)
model = model.eval().float() # 确保所有参数都是 float32
else:
# GPU 模式:可以使用 bfloat16
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
use_safetensors=True,
torch_dtype=torch.bfloat16
)
model = model.eval().to(device)
# 创建设备兼容的推理包装器
original_infer = model.infer
def device_compatible_infer(*args, **kwargs):
"""设备兼容的推理包装器,支持 CPU/GPU 自动切换"""
import torch
# 临时修补 torch.cuda.is_available 和相关方法
old_is_available = torch.cuda.is_available
old_cuda_method = None
old_float_tensor = None
try:
# 如果是 CPU 模式,劫持 CUDA 调用
if device == "cpu":
torch.cuda.is_available = lambda: False
# 修补 tensor.cuda() 方法
def cpu_wrapper(self, *args, **kwargs):
# 确保返回 float32 类型
result = self.cpu()
if result.dtype == torch.bfloat16:
result = result.float()
return result
# 保存原始方法
if hasattr(torch.Tensor, '_original_cuda'):
old_cuda_method = torch.Tensor._original_cuda
else:
old_cuda_method = torch.Tensor.cuda
torch.Tensor._original_cuda = old_cuda_method
torch.Tensor.cuda = cpu_wrapper
# 修补 torch.cuda.FloatTensor
old_float_tensor = torch.cuda.FloatTensor
torch.cuda.FloatTensor = torch.FloatTensor
# 调用原始 infer 方法
return original_infer(*args, **kwargs)
finally:
# 恢复原始方法
torch.cuda.is_available = old_is_available
if old_cuda_method is not None:
torch.Tensor.cuda = old_cuda_method
if old_float_tensor is not None:
torch.cuda.FloatTensor = old_float_tensor
# 替换模型的 infer 方法
model.infer = device_compatible_infer
MODEL_CONFIGS = {
"⚡ Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
"🚀 Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"📄 Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"📊 Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"🎯 Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}
}
TASK_PROMPTS = {
"📋 Markdown": {"prompt": "<image>\n<|grounding|>Convert the document to markdown.", "has_grounding": True},
"📝 Free OCR": {"prompt": "<image>\nFree OCR.", "has_grounding": False},
"📍 Locate": {"prompt": "<image>\nLocate <|ref|>text<|/ref|> in the image.", "has_grounding": True},
"🔍 Describe": {"prompt": "<image>\nDescribe this image in detail.", "has_grounding": False},
"✏️ Custom": {"prompt": "", "has_grounding": False}
}
def extract_grounding_references(text):
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
return re.findall(pattern, text, re.DOTALL)
def draw_bounding_boxes(image, refs, extract_images=False):
img_w, img_h = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
draw2 = ImageDraw.Draw(overlay)
font = ImageFont.load_default()
crops = []
for ref in refs:
label = ref[1]
coords = eval(ref[2])
color = (np.random.randint(50, 255), np.random.randint(
50, 255), np.random.randint(50, 255))
color_a = color + (60,)
for box in coords:
x1, y1, x2, y2 = int(
box[0]/999*img_w), int(box[1]/999*img_h), int(box[2]/999*img_w), int(box[3]/999*img_h)
if extract_images and label == 'image':
crops.append(image.crop((x1, y1, x2, y2)))
width = 5 if label == 'title' else 3
draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
draw2.rectangle([x1, y1, x2, y2], fill=color_a)
text_bbox = draw.textbbox((0, 0), label, font=font)
tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
ty = max(0, y1 - 20)
draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color)
draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255))
img_draw.paste(overlay, (0, 0), overlay)
return img_draw, crops
def clean_output(text, include_images=False, remove_labels=False):
if not text:
return ""
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
matches = re.findall(pattern, text, re.DOTALL)
img_num = 0
for match in matches:
if '<|ref|>image<|/ref|>' in match[0]:
if include_images:
text = text.replace(
match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1)
img_num += 1
else:
text = text.replace(match[0], '', 1)
else:
if remove_labels:
text = text.replace(match[0], '', 1)
else:
text = text.replace(match[0], match[1], 1)
return text.strip()
def embed_images(markdown, crops):
if not crops:
return markdown
for i, img in enumerate(crops):
buf = BytesIO()
img.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
markdown = markdown.replace(
f'**[Figure {i + 1}]**', f'\n\n\n\n', 1)
return markdown
@spaces.GPU(duration=60)
def process_image(image, mode, task, custom_prompt):
if image is None:
return " Error Upload image", "", "", None, []
if task in ["✏️ Custom", "📍 Locate"] and not custom_prompt.strip():
return "Enter prompt", "", "", None, []
if image.mode in ('RGBA', 'LA', 'P'):
image = image.convert('RGB')
image = ImageOps.exif_transpose(image)
config = MODEL_CONFIGS[mode]
if task == "✏️ Custom":
prompt = f"<image>\n{custom_prompt.strip()}"
has_grounding = '<|grounding|>' in custom_prompt
elif task == "📍 Locate":
prompt = f"<image>\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image."
has_grounding = True
else:
prompt = TASK_PROMPTS[task]["prompt"]
has_grounding = TASK_PROMPTS[task]["has_grounding"]
tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
image.save(tmp.name, 'JPEG', quality=95)
tmp.close()
out_dir = tempfile.mkdtemp()
stdout = sys.stdout
sys.stdout = StringIO()
model.infer(tokenizer=tokenizer, prompt=prompt, image_file=tmp.name, output_path=out_dir,
base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"])
result = '\n'.join([l for l in sys.stdout.getvalue().split('\n')
if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip()
sys.stdout = stdout
os.unlink(tmp.name)
shutil.rmtree(out_dir, ignore_errors=True)
if not result:
return "No text", "", "", None, []
cleaned = clean_output(result, False, False)
markdown = clean_output(result, True, True)
img_out = None
crops = []
if has_grounding and '<|ref|>' in result:
refs = extract_grounding_references(result)
if refs:
img_out, crops = draw_bounding_boxes(image, refs, True)
markdown = embed_images(markdown, crops)
return cleaned, markdown, result, img_out, crops
@spaces.GPU(duration=300)
def process_pdf(path, mode, task, custom_prompt):
doc = fitz.open(path)
texts, markdowns, raws, all_crops = [], [], [], []
for i in range(len(doc)):
page = doc.load_page(i)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
text, md, raw, _, crops = process_image(img, mode, task, custom_prompt)
if text and text != "No text":
texts.append(f"### Page {i + 1}\n\n{text}")
markdowns.append(f"### Page {i + 1}\n\n{md}")
raws.append(f"=== Page {i + 1} ===\n{raw}")
all_crops.extend(crops)
doc.close()
return ("\n\n---\n\n".join(texts) if texts else "No text in PDF",
"\n\n---\n\n".join(markdowns) if markdowns else "No text in PDF",
"\n\n".join(raws), None, all_crops)
def process_file(path, mode, task, custom_prompt):
if not path:
return "Error Upload file", "", "", None, []
if path.lower().endswith('.pdf'):
return process_pdf(path, mode, task, custom_prompt)
else:
return process_image(Image.open(path), mode, task, custom_prompt)
def toggle_prompt(task):
if task == "✏️ Custom":
return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes")
elif task == "📍 Locate":
return gr.update(visible=True, label="Text to Locate", placeholder="Enter text")
return gr.update(visible=False)
def load_image(file_path):
if not file_path:
return None
if file_path.lower().endswith('.pdf'):
doc = fitz.open(file_path)
page = doc.load_page(0)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
doc.close()
return img
else:
return Image.open(file_path)
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR") as demo:
gr.Markdown("""
# 🚀 DeepSeek-OCR Demo
**Convert documents to markdown, extract raw text, and locate specific content with bounding boxes. Check the info at the bottom of the page for more information.**
**Hope this tool was helpful! If so, a quick like ❤️ would mean a lot :)**
""")
with gr.Row():
with gr.Column(scale=1):
file_in = gr.File(label="Upload Image or PDF", file_types=[
"image", ".pdf"], type="filepath")
input_img = gr.Image(label="Input Image", type="pil", height=300)
mode = gr.Dropdown(list(MODEL_CONFIGS.keys()),
value="⚡ Gundam", label="Mode")
task = gr.Dropdown(list(TASK_PROMPTS.keys()),
value="📋 Markdown", label="Task")
prompt = gr.Textbox(label="Prompt", lines=2, visible=False)
btn = gr.Button("Extract", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("📝 Text"):
text_out = gr.Textbox(
lines=20, show_copy_button=True, show_label=False)
with gr.Tab("🎨 Markdown"):
md_out = gr.Markdown("")
with gr.Tab("🖼️ Boxes"):
img_out = gr.Image(
type="pil", height=500, show_label=False)
with gr.Tab("🖼️ Cropped Images"):
gallery = gr.Gallery(
show_label=False, columns=3, height=400)
with gr.Tab("🔍 Raw"):
raw_out = gr.Textbox(
lines=20, show_copy_button=True, show_label=False)
gr.Examples(
examples=[
["examples/ocr.jpg", "⚡ Gundam", "📋 Markdown", ""],
["examples/reachy-mini.jpg", "⚡ Gundam", "📍 Locate", "Robot"]
],
inputs=[input_img, mode, task, prompt],
cache_examples=False
)
with gr.Accordion("ℹ️ Info", open=False):
gr.Markdown("""
### Modes
- **Gundam**: 1024 base + 640 tiles with cropping - Best balance
- **Tiny**: 512×512, no crop - Fastest
- **Small**: 640×640, no crop - Quick
- **Base**: 1024×1024, no crop - Standard
- **Large**: 1280×1280, no crop - Highest quality
### Tasks
- **Markdown**: Convert document to structured markdown (grounding ✅)
- **Free OCR**: Simple text extraction
- **Locate**: Find specific text in image (grounding ✅)
- **Describe**: General image description
- **Custom**: Your own prompt (add `<|grounding|>` for boxes)
""")
file_in.change(load_image, [file_in], [input_img])
task.change(toggle_prompt, [task], [prompt])
def run(image, file_path, mode, task, custom_prompt):
if image is not None:
return process_image(image, mode, task, custom_prompt)
if file_path:
return process_file(file_path, mode, task, custom_prompt)
return "Error uploading file or image", "", "", None, []
btn.click(run, [input_img, file_in, mode, task, prompt],
[text_out, md_out, raw_out, img_out, gallery])
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|