Spaces:
Build error
Build error
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed | |
| from transformers import pipeline | |
| import json | |
| def load_tokenizer(model_ckpt): | |
| return AutoTokenizer.from_pretrained(model_ckpt) | |
| def load_model(model_ckpt): | |
| model = AutoModelForCausalLM.from_pretrained(model_ckpt) | |
| return model | |
| def load_examples(): | |
| with open("examples.json", "r") as f: | |
| examples = json.load(f) | |
| return dict([(x["name"], x["value"]) for x in examples]) | |
| st.set_page_config(page_icon=':parrot:', layout="wide") | |
| default_code = '''\ | |
| def print_hello_world():\ | |
| ''' | |
| model_ckpt = "lvwerra/codeparrot" | |
| tokenizer = load_tokenizer(model_ckpt) | |
| model = load_model(model_ckpt) | |
| examples = load_examples() | |
| set_seed(42) | |
| gen_kwargs = {} | |
| st.title("CodeParrot 🦜") | |
| st.markdown('##') | |
| pipe = pipeline('text-generation', model=model, tokenizer=tokenizer) | |
| st.sidebar.header("Examples:") | |
| selected_example = st.sidebar.selectbox("Select one of the following examples:", examples.keys()) | |
| example_text = examples[selected_example] | |
| st.sidebar.header("Generation settings:") | |
| gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy", ["Greedy", "Sample"]) == "Sample" | |
| gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate", value=32, min_value=8, step=8, max_value=256) | |
| if gen_kwargs["do_sample"]: | |
| gen_kwargs["temperature"] = st.sidebar.slider("Temperature", value = 0.2, min_value = 0.0, max_value=2.0, step=0.05) | |
| gen_kwargs["top_k"] = st.sidebar.slider("Top-k", min_value = 0, max_value=100, value = 0) | |
| gen_kwargs["top_p"] = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.01, value = 0.95) | |
| gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip() | |
| if st.button("Generate code!"): | |
| with st.spinner("Generating code..."): | |
| generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text'] | |
| st.code(generated_text) |