Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from fastai.vision.all import *
|
| 4 |
+
|
| 5 |
+
learn = load_learner('model.pkl')
|
| 6 |
+
|
| 7 |
+
labels = learn.dls.vocab
|
| 8 |
+
def predict(img):
|
| 9 |
+
img = PILImage.create(img)
|
| 10 |
+
pred,pred_idx,probs = learn.predict(img)
|
| 11 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 12 |
+
|
| 13 |
+
title = "Pet Breed Classifier"
|
| 14 |
+
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
|
| 15 |
+
interpretation='default'
|
| 16 |
+
enable_queue=True
|
| 17 |
+
|
| 18 |
+
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|