Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from gliner import GLiNER
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
|
| 6 |
+
# Load the BL dataset as a streaming iterator
|
| 7 |
+
dataset_iter = load_dataset(
|
| 8 |
+
"TheBritishLibrary/blbooks",
|
| 9 |
+
split="train",
|
| 10 |
+
streaming=True, # Enable streaming
|
| 11 |
+
trust_remote_code=True
|
| 12 |
+
).shuffle(seed=42) # Shuffle added
|
| 13 |
+
|
| 14 |
+
# Load the model
|
| 15 |
+
model = GLiNER.from_pretrained("max-long/textile_machines_3_oct", trust_remote_code=True)
|
| 16 |
+
|
| 17 |
+
def ner(text: str, labels: str, threshold: float):
|
| 18 |
+
# Convert user-provided labels (comma-separated string) into a list
|
| 19 |
+
labels_list = [label.strip() for label in labels.split(",")]
|
| 20 |
+
|
| 21 |
+
# Predict entities using the fine-tuned GLiNER model
|
| 22 |
+
entities = model.predict_entities(text, labels_list, flat_ner=True, threshold=threshold)
|
| 23 |
+
|
| 24 |
+
# Prepare data for HighlightedText
|
| 25 |
+
highlighted_text = text
|
| 26 |
+
for ent in sorted(entities, key=lambda x: x['start'], reverse=True):
|
| 27 |
+
highlighted_text = (
|
| 28 |
+
highlighted_text[:ent['start']] +
|
| 29 |
+
f"<span style='background-color: yellow; font-weight: bold;'>{highlighted_text[ent['start']:ent['end']]}</span>" +
|
| 30 |
+
highlighted_text[ent['end']:]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
return highlighted_text, entities
|
| 34 |
+
|
| 35 |
+
with gr.Blocks(title="General NER Demo") as demo:
|
| 36 |
+
gr.Markdown(
|
| 37 |
+
"""
|
| 38 |
+
# General Entity Recognition Demo
|
| 39 |
+
This demo selects a random text snippet from a subset of the British Library's books dataset and identifies entities using a fine-tuned GLiNER model. You can specify the entities you want to find.
|
| 40 |
+
"""
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Display a random example
|
| 44 |
+
input_text = gr.Textbox(
|
| 45 |
+
value="The machine is fed by means of an endless apron, the wool entering at the smaller end...",
|
| 46 |
+
label="Text input",
|
| 47 |
+
placeholder="Enter your text here",
|
| 48 |
+
lines=5
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
with gr.Row() as row:
|
| 52 |
+
labels = gr.Textbox(
|
| 53 |
+
value="Machine, Wool", # Default example labels
|
| 54 |
+
label="Labels",
|
| 55 |
+
placeholder="Enter your labels here (comma separated)",
|
| 56 |
+
scale=2,
|
| 57 |
+
)
|
| 58 |
+
threshold = gr.Slider(
|
| 59 |
+
0,
|
| 60 |
+
1,
|
| 61 |
+
value=0.5, # Adjusted to match the threshold used in the function
|
| 62 |
+
step=0.01,
|
| 63 |
+
label="Threshold",
|
| 64 |
+
info="Lower the threshold to increase how many entities get predicted.",
|
| 65 |
+
scale=1,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Define output components
|
| 69 |
+
output_highlighted = gr.HTML(label="Predicted Entities")
|
| 70 |
+
output_entities = gr.JSON(label="Entities")
|
| 71 |
+
|
| 72 |
+
submit_btn = gr.Button("Find Entities!")
|
| 73 |
+
refresh_btn = gr.Button("Get New Snippet")
|
| 74 |
+
|
| 75 |
+
def get_new_snippet():
|
| 76 |
+
attempts = 0
|
| 77 |
+
max_attempts = 1000 # Prevent infinite loops
|
| 78 |
+
for sample in dataset_iter:
|
| 79 |
+
return sample['text']
|
| 80 |
+
return "No more snippets available." # Return this if no valid snippets are found
|
| 81 |
+
|
| 82 |
+
# Connect refresh button
|
| 83 |
+
refresh_btn.click(fn=get_new_snippet, outputs=input_text)
|
| 84 |
+
|
| 85 |
+
# Connect submit button
|
| 86 |
+
submit_btn.click(
|
| 87 |
+
fn=lambda text, labels, threshold: ner(text, labels, threshold),
|
| 88 |
+
inputs=[input_text, labels, threshold],
|
| 89 |
+
outputs=[output_highlighted, output_entities]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
demo.queue()
|
| 93 |
+
demo.launch(debug=True)
|