Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| ----------------------------------------------------------------------------- | |
| Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | |
| NVIDIA CORPORATION and its licensors retain all intellectual property | |
| and proprietary rights in and to this software, related documentation | |
| and any modifications thereto. Any use, reproduction, disclosure or | |
| distribution of this software and related documentation without an express | |
| license agreement from NVIDIA CORPORATION is strictly prohibited. | |
| ----------------------------------------------------------------------------- | |
| """ | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.utils.checkpoint import checkpoint | |
| from vae.modules.attention import CrossAttention, SelfAttention | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, mult=4): | |
| super().__init__() | |
| self.net = nn.Sequential(nn.Linear(dim, dim * mult), nn.GELU(), nn.Linear(dim * mult, dim)) | |
| def forward(self, x): | |
| return self.net(x) | |
| # Adapted from https://github.com/facebookresearch/DiT/blob/main/models.py#L27 | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, hidden_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| Args: | |
| t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| dim: the dimension of the output. | |
| max_period: controls the minimum frequency of the embeddings. | |
| Returns: | |
| an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| half = dim // 2 | |
| freqs = torch.exp(-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
| device=t.device | |
| ) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| dtype = next(self.mlp.parameters()).dtype # need to determine on the fly... | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| t_freq = t_freq.to(dtype=dtype) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |
| class DiTLayer(nn.Module): | |
| def __init__(self, dim, num_heads, qknorm=False, gradient_checkpointing=True, qknorm_type="LayerNorm"): | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.gradient_checkpointing = gradient_checkpointing | |
| self.norm1 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
| self.attn1 = SelfAttention(dim, num_heads, qknorm=qknorm, qknorm_type=qknorm_type) | |
| self.norm2 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
| self.attn2 = CrossAttention(dim, num_heads, context_dim=dim, qknorm=qknorm, qknorm_type=qknorm_type) | |
| self.norm3 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) | |
| self.ff = FeedForward(dim) | |
| self.adaln_linear = nn.Linear(dim, dim * 6, bias=True) | |
| def forward(self, x, c, t_emb): | |
| if self.training and self.gradient_checkpointing: | |
| return checkpoint(self._forward, x, c, t_emb, use_reentrant=False) | |
| else: | |
| return self._forward(x, c, t_emb) | |
| def _forward(self, x, c, t_emb): | |
| # x: [B, N, C], hidden states | |
| # c: [B, M, C], condition (assume normed and projected to C) | |
| # t_emb: [B, C], timestep embedding of adaln | |
| # return: [B, N, C], updated hidden states | |
| B, N, C = x.shape | |
| t_adaln = self.adaln_linear(F.silu(t_emb)).view(B, 6, -1) # [B, 6, C] | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = t_adaln.chunk(6, dim=1) | |
| h = self.norm1(x) | |
| h = h * (1 + scale_msa) + shift_msa | |
| x = x + gate_msa * self.attn1(h) | |
| h = self.norm2(x) | |
| x = x + self.attn2(h, c) | |
| h = self.norm3(x) | |
| h = h * (1 + scale_mlp) + shift_mlp | |
| x = x + gate_mlp * self.ff(h) | |
| return x | |
| class DiT(nn.Module): | |
| def __init__( | |
| self, | |
| hidden_dim=1024, | |
| num_heads=16, | |
| latent_size=2048, | |
| latent_dim=8, | |
| num_layers=24, | |
| qknorm=False, | |
| gradient_checkpointing=True, | |
| qknorm_type="LayerNorm", | |
| use_pos_embed=False, | |
| use_parts=False, | |
| part_embed_mode="part2_only", | |
| ): | |
| super().__init__() | |
| # project in | |
| self.proj_in = nn.Linear(latent_dim, hidden_dim) | |
| # positional encoding (just use a learnable positional encoding) | |
| self.use_pos_embed = use_pos_embed | |
| if self.use_pos_embed: | |
| self.pos_embed = nn.Parameter(torch.randn(1, latent_size, hidden_dim) / hidden_dim**0.5) | |
| # part encoding (a must to distinguish parts!) | |
| self.use_parts = use_parts | |
| self.part_embed_mode = part_embed_mode | |
| if self.use_parts: | |
| if self.part_embed_mode == "element": | |
| self.part_embed = nn.Parameter(torch.randn(latent_size, hidden_dim) / hidden_dim**0.5) | |
| elif self.part_embed_mode == "part": | |
| self.part_embed = nn.Parameter(torch.randn(2, hidden_dim)) | |
| elif self.part_embed_mode == "part2_only": | |
| # we only add this to the second part to distinguish from the first part | |
| self.part_embed = nn.Parameter(torch.randn(1, hidden_dim) / hidden_dim**0.5) | |
| # timestep encoding | |
| self.timestep_embed = TimestepEmbedder(hidden_dim) | |
| # transformer layers | |
| self.layers = nn.ModuleList( | |
| [DiTLayer(hidden_dim, num_heads, qknorm, gradient_checkpointing, qknorm_type) for _ in range(num_layers)] | |
| ) | |
| # project out | |
| self.norm_out = nn.LayerNorm(hidden_dim, eps=1e-6, elementwise_affine=False) | |
| self.proj_out = nn.Linear(hidden_dim, latent_dim) | |
| # init | |
| self.init_weight() | |
| def init_weight(self): | |
| # Initialize transformer layers | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # Initialize timestep embedding MLP: | |
| nn.init.normal_(self.timestep_embed.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.timestep_embed.mlp[2].weight, std=0.02) | |
| # Zero-out adaLN modulation layers in DiT blocks: | |
| for layer in self.layers: | |
| nn.init.constant_(layer.adaln_linear.weight, 0) | |
| nn.init.constant_(layer.adaln_linear.bias, 0) | |
| # Zero-out output layers: | |
| nn.init.constant_(self.proj_out.weight, 0) | |
| nn.init.constant_(self.proj_out.bias, 0) | |
| def forward(self, x, c, t): | |
| # x: [B, N, C], hidden states | |
| # c: [B, M, C], condition (assume normed and projected to C) | |
| # t: [B,], timestep | |
| # return: [B, N, C], updated hidden states | |
| B, N, C = x.shape | |
| # project in | |
| x = self.proj_in(x) | |
| # positional encoding | |
| if self.use_pos_embed: | |
| x = x + self.pos_embed | |
| # part encoding | |
| if self.use_parts: | |
| if self.part_embed_mode == "element": | |
| x += self.part_embed | |
| elif self.part_embed_mode == "part": | |
| x[:, : x.shape[1] // 2, :] += self.part_embed[0] | |
| x[:, x.shape[1] // 2 :, :] += self.part_embed[1] | |
| elif self.part_embed_mode == "part2_only": | |
| x[:, x.shape[1] // 2 :, :] += self.part_embed[0] | |
| # timestep encoding | |
| t_emb = self.timestep_embed(t) # [B, C] | |
| # transformer layers | |
| for layer in self.layers: | |
| x = layer(x, c, t_emb) | |
| # project out | |
| x = self.norm_out(x) | |
| x = self.proj_out(x) | |
| return x | |