Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import numpy as np | |
| import cv2 | |
| import kiui | |
| import trimesh | |
| import torch | |
| import rembg | |
| from datetime import datetime | |
| import subprocess | |
| import gradio as gr | |
| try: | |
| # running on Hugging Face Spaces | |
| import spaces | |
| except ImportError: | |
| # running locally, use a dummy space | |
| class spaces: | |
| class GPU: | |
| def __init__(self, duration=60): | |
| self.duration = duration | |
| def __call__(self, func): | |
| return func | |
| from flow.model import Model | |
| from flow.configs.schema import ModelConfig | |
| from flow.utils import get_random_color, recenter_foreground | |
| from vae.utils import postprocess_mesh | |
| # download checkpoints | |
| from huggingface_hub import hf_hub_download | |
| flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt") | |
| vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt") | |
| TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| bg_remover = rembg.new_session() | |
| # model config | |
| model_config = ModelConfig( | |
| vae_conf="vae.configs.part_woenc", | |
| vae_ckpt_path=vae_ckpt_path, | |
| qknorm=True, | |
| qknorm_type="RMSNorm", | |
| use_pos_embed=False, | |
| dino_model="dinov2_vitg14", | |
| hidden_dim=1536, | |
| flow_shift=3.0, | |
| logitnorm_mean=1.0, | |
| logitnorm_std=1.0, | |
| latent_size=4096, | |
| use_parts=True, | |
| ) | |
| # instantiate model | |
| model = Model(model_config).eval().cuda().bfloat16() | |
| # load weight | |
| ckpt_dict = torch.load(flow_ckpt_path, weights_only=True) | |
| model.load_state_dict(ckpt_dict, strict=True) | |
| # get random seed | |
| def get_random_seed(randomize_seed, seed): | |
| if randomize_seed: | |
| seed = np.random.randint(0, MAX_SEED) | |
| return seed | |
| # process image | |
| def process_image(image_path): | |
| image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) | |
| if image.shape[-1] == 4: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) | |
| else: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # bg removal if there is no alpha channel | |
| image = rembg.remove(image, session=bg_remover) # [H, W, 4] | |
| mask = image[..., -1] > 0 | |
| image = recenter_foreground(image, mask, border_ratio=0.1) | |
| image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA) | |
| return image | |
| # process generation | |
| def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000): | |
| # seed | |
| kiui.seed_everything(seed) | |
| # output path | |
| os.makedirs("output", exist_ok=True) | |
| output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb" | |
| # input image (assume processed to RGBA uint8) | |
| image = input_image.astype(np.float32) / 255.0 | |
| image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background | |
| image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda() | |
| data = {"cond_images": image_tensor} | |
| with torch.inference_mode(): | |
| results = model(data, num_steps=num_steps, cfg_scale=cfg_scale) | |
| latent = results["latent"] | |
| # query mesh | |
| data_part0 = {"latent": latent[:, : model.config.latent_size, :]} | |
| data_part1 = {"latent": latent[:, model.config.latent_size :, :]} | |
| with torch.inference_mode(): | |
| results_part0 = model.vae(data_part0, resolution=grid_res) | |
| results_part1 = model.vae(data_part1, resolution=grid_res) | |
| if not simplify_mesh: | |
| target_num_faces = -1 | |
| vertices, faces = results_part0["meshes"][0] | |
| mesh_part0 = trimesh.Trimesh(vertices, faces) | |
| mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T | |
| mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces) | |
| parts = mesh_part0.split(only_watertight=False) | |
| vertices, faces = results_part1["meshes"][0] | |
| mesh_part1 = trimesh.Trimesh(vertices, faces) | |
| mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T | |
| mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces) | |
| parts.extend(mesh_part1.split(only_watertight=False)) | |
| # split connected components and assign different colors | |
| for j, part in enumerate(parts): | |
| # each component uses a random color | |
| part.visual.vertex_colors = get_random_color(j, use_float=True) | |
| mesh = trimesh.Scene(parts) | |
| # export the whole mesh | |
| mesh.export(output_glb_path) | |
| return output_glb_path | |
| # gradio UI | |
| _TITLE = '''PartPacker: Efficient Part-level 3D Object Generation via Dual Volume Packing''' | |
| _DESCRIPTION = ''' | |
| <div> | |
| <a style="display:inline-block" href="https://research.nvidia.com/labs/dir/partpacker/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
| <a style="display:inline-block; margin-left: .5em" href="https://github.com/NVlabs/PartPacker"><img src='https://img.shields.io/github/stars/NVlabs/PartPacker?style=social'/></a> | |
| </div> | |
| * Each part is visualized with a random color, and can be separated in the GLB file. | |
| * If the output is not satisfactory, please try different random seeds! | |
| ''' | |
| block = gr.Blocks(title=_TITLE).queue() | |
| with block: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown('# ' + _TITLE) | |
| gr.Markdown(_DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| # input image | |
| input_image = gr.Image(label="Input Image", type="filepath", image_mode="RGBA") # use file_path and load manually | |
| seg_image = gr.Image(label="Segmentation Result", type="numpy", interactive=False, image_mode="RGBA") | |
| with gr.Accordion("Settings", open=True): | |
| # inference steps | |
| num_steps = gr.Slider(label="Inference steps", minimum=1, maximum=100, step=1, value=50) | |
| # cfg scale | |
| cfg_scale = gr.Slider(label="CFG scale", minimum=2, maximum=10, step=0.1, value=7.0) | |
| # grid resolution | |
| input_grid_res = gr.Slider(label="Grid resolution", minimum=256, maximum=512, step=1, value=384) | |
| # random seed | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| # simplify mesh | |
| with gr.Row(): | |
| simplify_mesh = gr.Checkbox(label="Simplify mesh", value=False) | |
| target_num_faces = gr.Slider(label="Face number", minimum=10000, maximum=1000000, step=1000, value=100000) | |
| # gen button | |
| button_gen = gr.Button("Generate") | |
| with gr.Column(scale=1): | |
| # glb file | |
| output_model = gr.Model3D(label="Geometry", height=512) | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[ | |
| ["examples/rabbit.png"], | |
| ["examples/robot.png"], | |
| ["examples/teapot.png"], | |
| ["examples/barrel.png"], | |
| ["examples/cactus.png"], | |
| ["examples/cyan_car.png"], | |
| ["examples/pickup.png"], | |
| ["examples/swivelchair.png"], | |
| ["examples/warhammer.png"], | |
| ], | |
| fn=process_image, # still need to click button_gen to get the 3d | |
| inputs=[input_image], | |
| outputs=[seg_image], | |
| cache_examples=False, | |
| ) | |
| button_gen.click( | |
| process_image, inputs=[input_image], outputs=[seg_image] | |
| ).then( | |
| get_random_seed, inputs=[randomize_seed, seed], outputs=[seed] | |
| ).then( | |
| process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model] | |
| ) | |
| block.launch() |