output displacy html
Browse files- .gitignore +1 -0
- app.py +50 -4
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.idea/
|
app.py
CHANGED
|
@@ -1,7 +1,53 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 3 |
|
| 4 |
+
import spacy
|
| 5 |
+
from spacy import displacy
|
| 6 |
|
| 7 |
+
ner_map = {0: '0',
|
| 8 |
+
1: 'B-OSOBA',
|
| 9 |
+
2: 'I-OSOBA',
|
| 10 |
+
3: 'B-ORGANIZΓCIA',
|
| 11 |
+
4: 'I-ORGANIZΓCIA',
|
| 12 |
+
5: 'B-LOKALITA',
|
| 13 |
+
6: 'I-LOKALITA'}
|
| 14 |
+
|
| 15 |
+
options = {"ents": ["OSOBA",
|
| 16 |
+
"ORGANIZΓCIA",
|
| 17 |
+
"LOKALITA"],
|
| 18 |
+
"colors": {"OSOBA": "lightblue",
|
| 19 |
+
"ORGANIZΓCIA": "lightcoral",
|
| 20 |
+
"LOKALITA": "lightgreen"}}
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained("crabz/slovakbert-ner")
|
| 23 |
+
model = AutoModelForTokenClassification.from_pretrained("crabz/slovakbert-ner")
|
| 24 |
+
ner_pipeline = pipeline(task='ner', model=model, tokenizer=tokenizer)
|
| 25 |
+
nlp = spacy.blank("en")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def apply_ner(text: str):
|
| 29 |
+
classifications = ner_pipeline(text)
|
| 30 |
+
|
| 31 |
+
entities = []
|
| 32 |
+
for i in range(len(classifications)):
|
| 33 |
+
if classifications[i]['entity'] != 0:
|
| 34 |
+
if ner_map[classifications[i]['entity']][0] == 'B':
|
| 35 |
+
j = i + 1
|
| 36 |
+
while j < len(classifications) and ner_map[classifications[j]['entity']][0] == 'I':
|
| 37 |
+
j += 1
|
| 38 |
+
entities.append((ner_map[classifications[i]['entity']].split('-')[1], classifications[i]['start'],
|
| 39 |
+
classifications[j - 1]['end']))
|
| 40 |
+
doc = nlp(text)
|
| 41 |
+
|
| 42 |
+
ents = []
|
| 43 |
+
for ee in entities:
|
| 44 |
+
ents.append(doc.char_span(ee[1], ee[2], ee[0]))
|
| 45 |
+
doc.ents = ents
|
| 46 |
+
|
| 47 |
+
displacy_html = displacy.render(doc, style="ent", options=options)
|
| 48 |
+
return displacy_html
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
intf = gr.Interface(fn=apply_ner, inputs="text", outputs="html", title='Slovak Named Entity Recognition',
|
| 52 |
+
allow_flagging=False)
|
| 53 |
+
intf.launch()
|