Spaces:
Runtime error
Runtime error
| # -*- coding:utf-8 -*- | |
| from __future__ import annotations | |
| from typing import TYPE_CHECKING, List | |
| import logging | |
| import json | |
| import os | |
| import requests | |
| import urllib3 | |
| from tqdm import tqdm | |
| import colorama | |
| from duckduckgo_search import ddg | |
| import asyncio | |
| import aiohttp | |
| from modules.presets import * | |
| from modules.llama_func import * | |
| from modules.utils import * | |
| from . import shared | |
| from modules.config import retrieve_proxy | |
| # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s") | |
| if TYPE_CHECKING: | |
| from typing import TypedDict | |
| class DataframeData(TypedDict): | |
| headers: List[str] | |
| data: List[List[str | int | bool]] | |
| initial_prompt = "You are a helpful assistant." | |
| HISTORY_DIR = "history" | |
| TEMPLATES_DIR = "templates" | |
| # 在不开启多账号模式的时候,这个装饰器不会起作用 | |
| def get_response( | |
| openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model | |
| ): | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {openai_api_key}", | |
| } | |
| history = [construct_system(system_prompt), *history] | |
| payload = { | |
| "model": selected_model, | |
| "messages": history, # [{"role": "user", "content": f"{inputs}"}], | |
| "temperature": temperature, # 1.0, | |
| "top_p": top_p, # 1.0, | |
| "n": 1, | |
| "stream": stream, | |
| "presence_penalty": 0, | |
| "frequency_penalty": 0, | |
| } | |
| if stream: | |
| timeout = timeout_streaming | |
| else: | |
| timeout = timeout_all | |
| # 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求 | |
| if shared.state.completion_url != COMPLETION_URL: | |
| logging.info(f"使用自定义API URL: {shared.state.completion_url}") | |
| with retrieve_proxy(): | |
| response = requests.post( | |
| shared.state.completion_url, | |
| headers=headers, | |
| json=payload, | |
| stream=True, | |
| timeout=timeout, | |
| ) | |
| return response | |
| def stream_predict( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| inputs, | |
| chatbot, | |
| all_token_counts, | |
| top_p, | |
| temperature, | |
| selected_model, | |
| fake_input=None, | |
| display_append="" | |
| ): | |
| def get_return_value(): | |
| return chatbot, history, status_text, all_token_counts | |
| logging.info("实时回答模式") | |
| partial_words = "" | |
| counter = 0 | |
| status_text = "开始实时传输回答……" | |
| history.append(construct_user(inputs)) | |
| history.append(construct_assistant("")) | |
| if fake_input: | |
| chatbot.append((fake_input, "")) | |
| else: | |
| chatbot.append((inputs, "")) | |
| user_token_count = 0 | |
| if fake_input is not None: | |
| input_token_count = count_token(construct_user(fake_input)) | |
| else: | |
| input_token_count = count_token(construct_user(inputs)) | |
| if len(all_token_counts) == 0: | |
| system_prompt_token_count = count_token(construct_system(system_prompt)) | |
| user_token_count = ( | |
| input_token_count + system_prompt_token_count | |
| ) | |
| else: | |
| user_token_count = input_token_count | |
| all_token_counts.append(user_token_count) | |
| logging.info(f"输入token计数: {user_token_count}") | |
| yield get_return_value() | |
| try: | |
| response = get_response( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| temperature, | |
| top_p, | |
| True, | |
| selected_model, | |
| ) | |
| except requests.exceptions.ConnectTimeout: | |
| status_text = ( | |
| standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
| ) | |
| yield get_return_value() | |
| return | |
| except requests.exceptions.ReadTimeout: | |
| status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt | |
| yield get_return_value() | |
| return | |
| yield get_return_value() | |
| error_json_str = "" | |
| if fake_input is not None: | |
| history[-2] = construct_user(fake_input) | |
| for chunk in tqdm(response.iter_lines()): | |
| if counter == 0: | |
| counter += 1 | |
| continue | |
| counter += 1 | |
| # check whether each line is non-empty | |
| if chunk: | |
| chunk = chunk.decode() | |
| chunklength = len(chunk) | |
| try: | |
| chunk = json.loads(chunk[6:]) | |
| except json.JSONDecodeError: | |
| logging.info(chunk) | |
| error_json_str += chunk | |
| status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" | |
| yield get_return_value() | |
| continue | |
| # decode each line as response data is in bytes | |
| if chunklength > 6 and "delta" in chunk["choices"][0]: | |
| finish_reason = chunk["choices"][0]["finish_reason"] | |
| status_text = construct_token_message(all_token_counts) | |
| if finish_reason == "stop": | |
| yield get_return_value() | |
| break | |
| try: | |
| partial_words = ( | |
| partial_words + chunk["choices"][0]["delta"]["content"] | |
| ) | |
| except KeyError: | |
| status_text = ( | |
| standard_error_msg | |
| + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " | |
| + str(sum(all_token_counts)) | |
| ) | |
| yield get_return_value() | |
| break | |
| history[-1] = construct_assistant(partial_words) | |
| chatbot[-1] = (chatbot[-1][0], partial_words+display_append) | |
| all_token_counts[-1] += 1 | |
| yield get_return_value() | |
| def predict_all( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| inputs, | |
| chatbot, | |
| all_token_counts, | |
| top_p, | |
| temperature, | |
| selected_model, | |
| fake_input=None, | |
| display_append="" | |
| ): | |
| logging.info("一次性回答模式") | |
| history.append(construct_user(inputs)) | |
| history.append(construct_assistant("")) | |
| if fake_input: | |
| chatbot.append((fake_input, "")) | |
| else: | |
| chatbot.append((inputs, "")) | |
| if fake_input is not None: | |
| all_token_counts.append(count_token(construct_user(fake_input))) | |
| else: | |
| all_token_counts.append(count_token(construct_user(inputs))) | |
| try: | |
| response = get_response( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| temperature, | |
| top_p, | |
| False, | |
| selected_model, | |
| ) | |
| except requests.exceptions.ConnectTimeout: | |
| status_text = ( | |
| standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
| ) | |
| return chatbot, history, status_text, all_token_counts | |
| except requests.exceptions.ProxyError: | |
| status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt | |
| return chatbot, history, status_text, all_token_counts | |
| except requests.exceptions.SSLError: | |
| status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt | |
| return chatbot, history, status_text, all_token_counts | |
| response = json.loads(response.text) | |
| if fake_input is not None: | |
| history[-2] = construct_user(fake_input) | |
| try: | |
| content = response["choices"][0]["message"]["content"] | |
| history[-1] = construct_assistant(content) | |
| chatbot[-1] = (chatbot[-1][0], content+display_append) | |
| total_token_count = response["usage"]["total_tokens"] | |
| if fake_input is not None: | |
| all_token_counts[-1] += count_token(construct_assistant(content)) | |
| else: | |
| all_token_counts[-1] = total_token_count - sum(all_token_counts) | |
| status_text = construct_token_message(total_token_count) | |
| return chatbot, history, status_text, all_token_counts | |
| except KeyError: | |
| status_text = standard_error_msg + str(response) | |
| return chatbot, history, status_text, all_token_counts | |
| def predict( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| inputs, | |
| chatbot, | |
| all_token_counts, | |
| top_p, | |
| temperature, | |
| stream=False, | |
| selected_model=MODELS[0], | |
| use_websearch=False, | |
| files = None, | |
| reply_language="中文", | |
| should_check_token_count=True, | |
| ): # repetition_penalty, top_k | |
| from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery | |
| from llama_index.indices.query.schema import QueryBundle | |
| from langchain.llms import OpenAIChat | |
| logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) | |
| if should_check_token_count: | |
| yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts | |
| if reply_language == "跟随问题语言(不稳定)": | |
| reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." | |
| old_inputs = None | |
| display_reference = [] | |
| limited_context = False | |
| if files: | |
| limited_context = True | |
| old_inputs = inputs | |
| msg = "加载索引中……(这可能需要几分钟)" | |
| logging.info(msg) | |
| yield chatbot+[(inputs, "")], history, msg, all_token_counts | |
| index = construct_index(openai_api_key, file_src=files) | |
| msg = "索引构建完成,获取回答中……" | |
| logging.info(msg) | |
| yield chatbot+[(inputs, "")], history, msg, all_token_counts | |
| with retrieve_proxy(): | |
| llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model)) | |
| prompt_helper = PromptHelper(max_input_size = 4096, num_output = 5, max_chunk_overlap = 20, chunk_size_limit=600) | |
| from llama_index import ServiceContext | |
| service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) | |
| query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore) | |
| query_bundle = QueryBundle(inputs) | |
| nodes = query_object.retrieve(query_bundle) | |
| reference_results = [n.node.text for n in nodes] | |
| reference_results = add_source_numbers(reference_results, use_source=False) | |
| display_reference = add_details(reference_results) | |
| display_reference = "\n\n" + "".join(display_reference) | |
| inputs = ( | |
| replace_today(PROMPT_TEMPLATE) | |
| .replace("{query_str}", inputs) | |
| .replace("{context_str}", "\n\n".join(reference_results)) | |
| .replace("{reply_language}", reply_language ) | |
| ) | |
| elif use_websearch: | |
| limited_context = True | |
| search_results = ddg(inputs, max_results=5) | |
| old_inputs = inputs | |
| reference_results = [] | |
| for idx, result in enumerate(search_results): | |
| logging.info(f"搜索结果{idx + 1}:{result}") | |
| domain_name = urllib3.util.parse_url(result["href"]).host | |
| reference_results.append([result["body"], result["href"]]) | |
| display_reference.append(f"{idx+1}. [{domain_name}]({result['href']})\n") | |
| reference_results = add_source_numbers(reference_results) | |
| display_reference = "\n\n" + "".join(display_reference) | |
| inputs = ( | |
| replace_today(WEBSEARCH_PTOMPT_TEMPLATE) | |
| .replace("{query}", inputs) | |
| .replace("{web_results}", "\n\n".join(reference_results)) | |
| .replace("{reply_language}", reply_language ) | |
| ) | |
| else: | |
| display_reference = "" | |
| if len(openai_api_key) == 0 and not shared.state.multi_api_key: | |
| status_text = standard_error_msg + no_apikey_msg | |
| logging.info(status_text) | |
| chatbot.append((inputs, "")) | |
| if len(history) == 0: | |
| history.append(construct_user(inputs)) | |
| history.append("") | |
| all_token_counts.append(0) | |
| else: | |
| history[-2] = construct_user(inputs) | |
| yield chatbot+[(inputs, "")], history, status_text, all_token_counts | |
| return | |
| elif len(inputs.strip()) == 0: | |
| status_text = standard_error_msg + no_input_msg | |
| logging.info(status_text) | |
| yield chatbot+[(inputs, "")], history, status_text, all_token_counts | |
| return | |
| if stream: | |
| logging.info("使用流式传输") | |
| iter = stream_predict( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| inputs, | |
| chatbot, | |
| all_token_counts, | |
| top_p, | |
| temperature, | |
| selected_model, | |
| fake_input=old_inputs, | |
| display_append=display_reference | |
| ) | |
| for chatbot, history, status_text, all_token_counts in iter: | |
| if shared.state.interrupted: | |
| shared.state.recover() | |
| return | |
| yield chatbot, history, status_text, all_token_counts | |
| else: | |
| logging.info("不使用流式传输") | |
| chatbot, history, status_text, all_token_counts = predict_all( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| inputs, | |
| chatbot, | |
| all_token_counts, | |
| top_p, | |
| temperature, | |
| selected_model, | |
| fake_input=old_inputs, | |
| display_append=display_reference | |
| ) | |
| yield chatbot, history, status_text, all_token_counts | |
| logging.info(f"传输完毕。当前token计数为{all_token_counts}") | |
| if len(history) > 1 and history[-1]["content"] != inputs: | |
| logging.info( | |
| "回答为:" | |
| + colorama.Fore.BLUE | |
| + f"{history[-1]['content']}" | |
| + colorama.Style.RESET_ALL | |
| ) | |
| if limited_context: | |
| history = history[-4:] | |
| all_token_counts = all_token_counts[-2:] | |
| yield chatbot, history, status_text, all_token_counts | |
| if stream: | |
| max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"] | |
| else: | |
| max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"] | |
| if sum(all_token_counts) > max_token and should_check_token_count: | |
| print(all_token_counts) | |
| count = 0 | |
| while sum(all_token_counts) > max_token - 500 and sum(all_token_counts) > 0: | |
| count += 1 | |
| del all_token_counts[0] | |
| del history[:2] | |
| logging.info(status_text) | |
| status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" | |
| yield chatbot, history, status_text, all_token_counts | |
| def retry( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| chatbot, | |
| token_count, | |
| top_p, | |
| temperature, | |
| stream=False, | |
| selected_model=MODELS[0], | |
| reply_language="中文", | |
| ): | |
| logging.info("重试中……") | |
| if len(history) == 0: | |
| yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count | |
| return | |
| history.pop() | |
| inputs = history.pop()["content"] | |
| token_count.pop() | |
| iter = predict( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| inputs, | |
| chatbot, | |
| token_count, | |
| top_p, | |
| temperature, | |
| stream=stream, | |
| selected_model=selected_model, | |
| reply_language=reply_language, | |
| ) | |
| logging.info("重试中……") | |
| for x in iter: | |
| yield x | |
| logging.info("重试完毕") | |
| def reduce_token_size( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| chatbot, | |
| token_count, | |
| top_p, | |
| temperature, | |
| max_token_count, | |
| selected_model=MODELS[0], | |
| reply_language="中文", | |
| ): | |
| logging.info("开始减少token数量……") | |
| iter = predict( | |
| openai_api_key, | |
| system_prompt, | |
| history, | |
| summarize_prompt, | |
| chatbot, | |
| token_count, | |
| top_p, | |
| temperature, | |
| selected_model=selected_model, | |
| should_check_token_count=False, | |
| reply_language=reply_language, | |
| ) | |
| logging.info(f"chatbot: {chatbot}") | |
| flag = False | |
| for chatbot, history, status_text, previous_token_count in iter: | |
| num_chat = find_n(previous_token_count, max_token_count) | |
| logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats") | |
| if flag: | |
| chatbot = chatbot[:-1] | |
| flag = True | |
| history = history[-2*num_chat:] if num_chat > 0 else [] | |
| token_count = previous_token_count[-num_chat:] if num_chat > 0 else [] | |
| msg = f"保留了最近{num_chat}轮对话" | |
| yield chatbot, history, msg + "," + construct_token_message( | |
| token_count if len(token_count) > 0 else [0], | |
| ), token_count | |
| logging.info(msg) | |
| logging.info("减少token数量完毕") | |