Spaces:
Running
Running
Create functions.py
Browse files- functions.py +297 -0
functions.py
ADDED
|
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import List, Dict, Union, Optional
|
| 4 |
+
import re
|
| 5 |
+
import openai
|
| 6 |
+
import requests
|
| 7 |
+
from PyPDF2 import PdfReader
|
| 8 |
+
from gradio_client import Client
|
| 9 |
+
|
| 10 |
+
# Configure logging
|
| 11 |
+
logging.basicConfig(
|
| 12 |
+
level=logging.INFO,
|
| 13 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 14 |
+
)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
| 18 |
+
"""
|
| 19 |
+
Extract text from a PDF file with robust error handling.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
file_path: Path to the PDF file
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
Extracted text as a string
|
| 26 |
+
|
| 27 |
+
Raises:
|
| 28 |
+
ValueError: If file doesn't exist or isn't readable
|
| 29 |
+
RuntimeError: If text extraction fails
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
if not Path(file_path).exists():
|
| 33 |
+
raise ValueError(f"PDF file not found: {file_path}")
|
| 34 |
+
|
| 35 |
+
reader = PdfReader(file_path)
|
| 36 |
+
text_content = []
|
| 37 |
+
|
| 38 |
+
for page_num, page in enumerate(reader.pages, 1):
|
| 39 |
+
try:
|
| 40 |
+
text = page.extract_text()
|
| 41 |
+
if text.strip():
|
| 42 |
+
text_content.append(text)
|
| 43 |
+
else:
|
| 44 |
+
logger.warning(f"Page {page_num} appears to be empty or unreadable")
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logger.error(f"Error extracting text from page {page_num}: {str(e)}")
|
| 47 |
+
continue
|
| 48 |
+
|
| 49 |
+
if not text_content:
|
| 50 |
+
raise RuntimeError("No readable text found in PDF")
|
| 51 |
+
|
| 52 |
+
return "\n\n".join(text_content)
|
| 53 |
+
|
| 54 |
+
except Exception as e:
|
| 55 |
+
logger.error(f"PDF extraction failed: {str(e)}")
|
| 56 |
+
raise RuntimeError(f"Failed to process PDF: {str(e)}")
|
| 57 |
+
|
| 58 |
+
def format_content(text: str, format_type: str) -> str:
|
| 59 |
+
"""
|
| 60 |
+
Format extracted text into the specified output format.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
text: Raw text content
|
| 64 |
+
format_type: Output format ('txt', 'md', 'html')
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
Formatted text string
|
| 68 |
+
|
| 69 |
+
Raises:
|
| 70 |
+
ValueError: If format type is invalid
|
| 71 |
+
"""
|
| 72 |
+
if not isinstance(text, str):
|
| 73 |
+
raise ValueError("Input text must be a string")
|
| 74 |
+
|
| 75 |
+
# Clean up common PDF extraction artifacts
|
| 76 |
+
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
|
| 77 |
+
text = re.sub(r'(?<=[.!?])\s+', '\n\n', text) # Split sentences into paragraphs
|
| 78 |
+
text = text.strip()
|
| 79 |
+
|
| 80 |
+
if format_type.lower() == 'txt':
|
| 81 |
+
return text
|
| 82 |
+
|
| 83 |
+
elif format_type.lower() == 'md':
|
| 84 |
+
paragraphs = text.split('\n\n')
|
| 85 |
+
md_text = []
|
| 86 |
+
|
| 87 |
+
for para in paragraphs:
|
| 88 |
+
# Detect and format headers
|
| 89 |
+
if re.match(r'^[A-Z][^.!?]*$', para.strip()):
|
| 90 |
+
md_text.append(f"## {para.strip()}")
|
| 91 |
+
else:
|
| 92 |
+
md_text.append(para.strip())
|
| 93 |
+
|
| 94 |
+
return '\n\n'.join(md_text)
|
| 95 |
+
|
| 96 |
+
elif format_type.lower() == 'html':
|
| 97 |
+
paragraphs = text.split('\n\n')
|
| 98 |
+
html_parts = ['<!DOCTYPE html>', '<html>', '<body>']
|
| 99 |
+
|
| 100 |
+
for para in paragraphs:
|
| 101 |
+
if re.match(r'^[A-Z][^.!?]*$', para.strip()):
|
| 102 |
+
html_parts.append(f"<h2>{para.strip()}</h2>")
|
| 103 |
+
else:
|
| 104 |
+
html_parts.append(f"<p>{para.strip()}</p>")
|
| 105 |
+
|
| 106 |
+
html_parts.extend(['</body>', '</html>'])
|
| 107 |
+
return '\n'.join(html_parts)
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
raise ValueError(f"Unsupported format type: {format_type}")
|
| 111 |
+
|
| 112 |
+
def split_into_snippets(text: str, chunk_size: int = 4000, overlap: int = 200) -> List[str]:
|
| 113 |
+
"""
|
| 114 |
+
Split text into overlapping chunks that fit within model context windows.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
text: Input text to split
|
| 118 |
+
chunk_size: Maximum size of each chunk
|
| 119 |
+
overlap: Number of characters to overlap between chunks
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
List of text snippets
|
| 123 |
+
|
| 124 |
+
Raises:
|
| 125 |
+
ValueError: If chunk_size is too small or text is empty
|
| 126 |
+
"""
|
| 127 |
+
if not text:
|
| 128 |
+
raise ValueError("Input text is empty")
|
| 129 |
+
|
| 130 |
+
if chunk_size < 1000:
|
| 131 |
+
raise ValueError("Chunk size must be at least 1000 characters")
|
| 132 |
+
|
| 133 |
+
# Split into paragraphs first
|
| 134 |
+
paragraphs = text.split('\n\n')
|
| 135 |
+
chunks = []
|
| 136 |
+
current_chunk = []
|
| 137 |
+
current_size = 0
|
| 138 |
+
|
| 139 |
+
for para in paragraphs:
|
| 140 |
+
para_size = len(para)
|
| 141 |
+
|
| 142 |
+
if current_size + para_size <= chunk_size:
|
| 143 |
+
current_chunk.append(para)
|
| 144 |
+
current_size += para_size + 2 # +2 for newlines
|
| 145 |
+
else:
|
| 146 |
+
if current_chunk:
|
| 147 |
+
chunks.append('\n\n'.join(current_chunk))
|
| 148 |
+
|
| 149 |
+
# Start new chunk with overlap
|
| 150 |
+
if chunks:
|
| 151 |
+
overlap_text = chunks[-1][-overlap:] if overlap > 0 else ""
|
| 152 |
+
current_chunk = [overlap_text, para]
|
| 153 |
+
current_size = len(overlap_text) + para_size + 2
|
| 154 |
+
else:
|
| 155 |
+
current_chunk = [para]
|
| 156 |
+
current_size = para_size
|
| 157 |
+
|
| 158 |
+
# Add the last chunk if it exists
|
| 159 |
+
if current_chunk:
|
| 160 |
+
chunks.append('\n\n'.join(current_chunk))
|
| 161 |
+
|
| 162 |
+
return chunks
|
| 163 |
+
|
| 164 |
+
def build_prompts(chunks: List[str], custom_prompt: Optional[str] = None) -> List[str]:
|
| 165 |
+
"""
|
| 166 |
+
Build formatted prompts for each text chunk.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
chunks: List of text chunks
|
| 170 |
+
custom_prompt: Optional custom instruction
|
| 171 |
+
|
| 172 |
+
Returns:
|
| 173 |
+
List of formatted prompt strings
|
| 174 |
+
"""
|
| 175 |
+
default_prompt = """Please analyze and summarize the following text. Focus on:
|
| 176 |
+
1. Key points and main ideas
|
| 177 |
+
2. Important details and supporting evidence
|
| 178 |
+
3. Any conclusions or recommendations
|
| 179 |
+
|
| 180 |
+
Please maintain the original meaning while being concise."""
|
| 181 |
+
|
| 182 |
+
instruction = custom_prompt if custom_prompt else default_prompt
|
| 183 |
+
prompts = []
|
| 184 |
+
|
| 185 |
+
for i, chunk in enumerate(chunks, 1):
|
| 186 |
+
prompt = f"""### Instruction
|
| 187 |
+
{instruction}
|
| 188 |
+
|
| 189 |
+
### Input Text (Part {i} of {len(chunks)})
|
| 190 |
+
{chunk}
|
| 191 |
+
|
| 192 |
+
### End of Input Text
|
| 193 |
+
|
| 194 |
+
Please provide your summary below:"""
|
| 195 |
+
prompts.append(prompt)
|
| 196 |
+
|
| 197 |
+
return prompts
|
| 198 |
+
|
| 199 |
+
def process_with_model(
|
| 200 |
+
prompt: str,
|
| 201 |
+
model_choice: str,
|
| 202 |
+
api_key: Optional[str] = None,
|
| 203 |
+
oauth_token: Optional[str] = None
|
| 204 |
+
) -> str:
|
| 205 |
+
"""
|
| 206 |
+
Process text with selected model.
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
prompt: Input prompt
|
| 210 |
+
model_choice: Selected model name
|
| 211 |
+
api_key: OpenAI API key for GPT models
|
| 212 |
+
oauth_token: Hugging Face token for other models
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
Generated summary
|
| 216 |
+
|
| 217 |
+
Raises:
|
| 218 |
+
ValueError: If required credentials are missing
|
| 219 |
+
RuntimeError: If model processing fails
|
| 220 |
+
"""
|
| 221 |
+
try:
|
| 222 |
+
if 'gpt' in model_choice.lower():
|
| 223 |
+
if not api_key:
|
| 224 |
+
raise ValueError("OpenAI API key required for GPT models")
|
| 225 |
+
|
| 226 |
+
openai.api_key = api_key
|
| 227 |
+
response = openai.ChatCompletion.create(
|
| 228 |
+
model="gpt-3.5-turbo" if "3.5" in model_choice else "gpt-4",
|
| 229 |
+
messages=[{"role": "user", "content": prompt}],
|
| 230 |
+
temperature=0.7,
|
| 231 |
+
max_tokens=1500
|
| 232 |
+
)
|
| 233 |
+
return response.choices[0].message.content
|
| 234 |
+
|
| 235 |
+
else: # Hugging Face models
|
| 236 |
+
if not oauth_token:
|
| 237 |
+
raise ValueError("Hugging Face token required")
|
| 238 |
+
|
| 239 |
+
headers = {"Authorization": f"Bearer {oauth_token}"}
|
| 240 |
+
|
| 241 |
+
# Map model choice to actual model ID
|
| 242 |
+
model_map = {
|
| 243 |
+
"Claude-3": "anthropic/claude-3-opus-20240229",
|
| 244 |
+
"Mistral": "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
model_id = model_map.get(model_choice)
|
| 248 |
+
if not model_id:
|
| 249 |
+
raise ValueError(f"Unknown model: {model_choice}")
|
| 250 |
+
|
| 251 |
+
response = requests.post(
|
| 252 |
+
f"https://api-inference.huggingface.co/models/{model_id}",
|
| 253 |
+
headers=headers,
|
| 254 |
+
json={"inputs": prompt}
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if response.status_code != 200:
|
| 258 |
+
raise RuntimeError(f"Model API error: {response.text}")
|
| 259 |
+
|
| 260 |
+
return response.json()[0]["generated_text"]
|
| 261 |
+
|
| 262 |
+
except Exception as e:
|
| 263 |
+
logger.error(f"Model processing failed: {str(e)}")
|
| 264 |
+
raise RuntimeError(f"Failed to process with model: {str(e)}")
|
| 265 |
+
|
| 266 |
+
def validate_api_keys(openai_key: Optional[str] = None, hf_token: Optional[str] = None) -> Dict[str, bool]:
|
| 267 |
+
"""
|
| 268 |
+
Validate API keys for different services.
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
openai_key: OpenAI API key
|
| 272 |
+
hf_token: Hugging Face token
|
| 273 |
+
|
| 274 |
+
Returns:
|
| 275 |
+
Dictionary with validation results
|
| 276 |
+
"""
|
| 277 |
+
results = {"openai": False, "huggingface": False}
|
| 278 |
+
|
| 279 |
+
if openai_key:
|
| 280 |
+
try:
|
| 281 |
+
openai.api_key = openai_key
|
| 282 |
+
openai.Model.list()
|
| 283 |
+
results["openai"] = True
|
| 284 |
+
except:
|
| 285 |
+
pass
|
| 286 |
+
|
| 287 |
+
if hf_token:
|
| 288 |
+
try:
|
| 289 |
+
response = requests.get(
|
| 290 |
+
"https://huggingface.co/api/models",
|
| 291 |
+
headers={"Authorization": f"Bearer {hf_token}"}
|
| 292 |
+
)
|
| 293 |
+
results["huggingface"] = response.status_code == 200
|
| 294 |
+
except:
|
| 295 |
+
pass
|
| 296 |
+
|
| 297 |
+
return results
|