Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import subprocess
|
|
| 6 |
import tempfile
|
| 7 |
import requests
|
| 8 |
from urllib.parse import urlparse
|
|
|
|
| 9 |
|
| 10 |
# Clone and install faster-whisper from GitHub
|
| 11 |
try:
|
|
@@ -90,7 +91,7 @@ def youtube_dl_alternative_method(url):
|
|
| 90 |
ydl_opts = {
|
| 91 |
'format': 'bestaudio/best',
|
| 92 |
'postprocessors': [{
|
| 93 |
-
'key': 'FFmpegExtractAudio',
|
| 94 |
'preferredcodec': 'mp3',
|
| 95 |
'preferredquality': '192',
|
| 96 |
}],
|
|
@@ -101,7 +102,7 @@ def youtube_dl_alternative_method(url):
|
|
| 101 |
'prefer_insecure': True,
|
| 102 |
}
|
| 103 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 104 |
-
info = ydl.extract_info(url, download=True)
|
| 105 |
return f"{info['id']}.mp3"
|
| 106 |
|
| 107 |
def ffmpeg_method(url):
|
|
@@ -110,7 +111,7 @@ def ffmpeg_method(url):
|
|
| 110 |
subprocess.run(command, check=True, capture_output=True)
|
| 111 |
return output_file
|
| 112 |
|
| 113 |
-
def aria2_method(url):
|
| 114 |
output_file = tempfile.mktemp(suffix='.mp3')
|
| 115 |
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
|
| 116 |
subprocess.run(command, check=True, capture_output=True)
|
|
@@ -130,14 +131,21 @@ def download_direct_audio(url, method_choice):
|
|
| 130 |
raise Exception(f"Failed to download audio from {url}")
|
| 131 |
except Exception as e:
|
| 132 |
return f"Error downloading direct audio: {str(e)}"
|
| 133 |
-
|
| 134 |
def wget_method(url):
|
| 135 |
-
output_file = tempfile.mktemp(suffix='.mp3')
|
| 136 |
command = ['wget', '-O', output_file, url]
|
| 137 |
subprocess.run(command, check=True, capture_output=True)
|
| 138 |
return output_file
|
| 139 |
|
| 140 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
try:
|
| 142 |
# Initialize the model
|
| 143 |
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
|
@@ -154,25 +162,31 @@ def transcribe_audio(input_source, batch_size, download_method):
|
|
| 154 |
# It's a local file path
|
| 155 |
audio_path = input_source
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
# Benchmark transcription time
|
| 158 |
-
|
| 159 |
-
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size)
|
| 160 |
-
|
| 161 |
|
| 162 |
# Show initial metrics as soon as possible
|
| 163 |
-
transcription_time =
|
| 164 |
real_time_factor = info.duration / transcription_time
|
| 165 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB
|
| 166 |
-
|
| 167 |
metrics_output = (
|
| 168 |
f"Language: {info.language}, Probability: {info.language_probability:.2f}\n"
|
| 169 |
-
f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n"
|
| 170 |
f"Transcription time: {transcription_time:.2f} seconds\n"
|
| 171 |
f"Real-time factor: {real_time_factor:.2f}x\n"
|
| 172 |
f"Audio file size: {audio_file_size:.2f} MB\n"
|
| 173 |
)
|
| 174 |
|
| 175 |
-
|
|
|
|
| 176 |
|
| 177 |
transcription = ""
|
| 178 |
|
|
@@ -181,7 +195,8 @@ def transcribe_audio(input_source, batch_size, download_method):
|
|
| 181 |
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
|
| 182 |
transcription += transcription_segment
|
| 183 |
|
| 184 |
-
|
|
|
|
| 185 |
|
| 186 |
# Final output with download option
|
| 187 |
transcription_file = save_transcription(transcription)
|
|
@@ -191,12 +206,17 @@ def transcribe_audio(input_source, batch_size, download_method):
|
|
| 191 |
yield f"An error occurred: {str(e)}", "", None
|
| 192 |
|
| 193 |
finally:
|
| 194 |
-
# Clean up downloaded
|
| 195 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 196 |
try:
|
| 197 |
os.remove(audio_path)
|
| 198 |
except:
|
| 199 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
def save_transcription(transcription):
|
| 202 |
file_path = tempfile.mktemp(suffix='.txt')
|
|
@@ -210,21 +230,24 @@ iface = gr.Interface(
|
|
| 210 |
inputs=[
|
| 211 |
gr.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"),
|
| 212 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
| 213 |
-
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp")
|
|
|
|
|
|
|
|
|
|
| 214 |
],
|
| 215 |
outputs=[
|
| 216 |
gr.Textbox(label="Transcription Metrics and Verbose Messages", live=True),
|
| 217 |
gr.Textbox(label="Transcription", live=True),
|
| 218 |
-
gr.File(label="Download Transcription")
|
| 219 |
],
|
| 220 |
title="Faster Whisper Multi-Input Transcription",
|
| 221 |
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper (GitHub version). Adjust the batch size and choose a download method.",
|
| 222 |
examples=[
|
| 223 |
-
["https://www.youtube.com/watch?v=daQ_hqA6HDo", 16, "yt-dlp"],
|
| 224 |
-
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", 16, "ffmpeg"],
|
| 225 |
-
["path/to/local/audio.mp3", 16, "yt-dlp"]
|
| 226 |
],
|
| 227 |
cache_examples=False # Prevents automatic processing of examples
|
| 228 |
)
|
| 229 |
|
| 230 |
-
iface.launch()
|
|
|
|
| 6 |
import tempfile
|
| 7 |
import requests
|
| 8 |
from urllib.parse import urlparse
|
| 9 |
+
from pydub import AudioSegment
|
| 10 |
|
| 11 |
# Clone and install faster-whisper from GitHub
|
| 12 |
try:
|
|
|
|
| 91 |
ydl_opts = {
|
| 92 |
'format': 'bestaudio/best',
|
| 93 |
'postprocessors': [{
|
| 94 |
+
'key': 'FFmpegExtractAudio',
|
| 95 |
'preferredcodec': 'mp3',
|
| 96 |
'preferredquality': '192',
|
| 97 |
}],
|
|
|
|
| 102 |
'prefer_insecure': True,
|
| 103 |
}
|
| 104 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 105 |
+
info = ydl.extract_info(url, download=True)
|
| 106 |
return f"{info['id']}.mp3"
|
| 107 |
|
| 108 |
def ffmpeg_method(url):
|
|
|
|
| 111 |
subprocess.run(command, check=True, capture_output=True)
|
| 112 |
return output_file
|
| 113 |
|
| 114 |
+
def aria2_method(url):
|
| 115 |
output_file = tempfile.mktemp(suffix='.mp3')
|
| 116 |
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
|
| 117 |
subprocess.run(command, check=True, capture_output=True)
|
|
|
|
| 131 |
raise Exception(f"Failed to download audio from {url}")
|
| 132 |
except Exception as e:
|
| 133 |
return f"Error downloading direct audio: {str(e)}"
|
| 134 |
+
|
| 135 |
def wget_method(url):
|
| 136 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
| 137 |
command = ['wget', '-O', output_file, url]
|
| 138 |
subprocess.run(command, check=True, capture_output=True)
|
| 139 |
return output_file
|
| 140 |
|
| 141 |
+
def trim_audio(audio_path, start_time, end_time):
|
| 142 |
+
audio = AudioSegment.from_mp3(audio_path)
|
| 143 |
+
trimmed_audio = audio[start_time*1000:end_time*1000] if end_time else audio[start_time*1000:]
|
| 144 |
+
trimmed_audio_path = tempfile.mktemp(suffix='.mp3')
|
| 145 |
+
trimmed_audio.export(trimmed_audio_path, format="mp3")
|
| 146 |
+
return trimmed_audio_path
|
| 147 |
+
|
| 148 |
+
def transcribe_audio(input_source, batch_size, download_method, start_time=None, end_time=None, verbose=False):
|
| 149 |
try:
|
| 150 |
# Initialize the model
|
| 151 |
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
|
|
|
| 162 |
# It's a local file path
|
| 163 |
audio_path = input_source
|
| 164 |
|
| 165 |
+
# Trim the audio if start_time or end_time is specified
|
| 166 |
+
if start_time is not None or end_time is not None:
|
| 167 |
+
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
| 168 |
+
audio_path = trimmed_audio_path
|
| 169 |
+
|
| 170 |
# Benchmark transcription time
|
| 171 |
+
start_time_perf = time.time()
|
| 172 |
+
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size, initial_prompt=None)
|
| 173 |
+
end_time_perf = time.time()
|
| 174 |
|
| 175 |
# Show initial metrics as soon as possible
|
| 176 |
+
transcription_time = end_time_perf - start_time_perf
|
| 177 |
real_time_factor = info.duration / transcription_time
|
| 178 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB
|
| 179 |
+
|
| 180 |
metrics_output = (
|
| 181 |
f"Language: {info.language}, Probability: {info.language_probability:.2f}\n"
|
| 182 |
+
f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n"
|
| 183 |
f"Transcription time: {transcription_time:.2f} seconds\n"
|
| 184 |
f"Real-time factor: {real_time_factor:.2f}x\n"
|
| 185 |
f"Audio file size: {audio_file_size:.2f} MB\n"
|
| 186 |
)
|
| 187 |
|
| 188 |
+
if verbose:
|
| 189 |
+
yield metrics_output, "", None
|
| 190 |
|
| 191 |
transcription = ""
|
| 192 |
|
|
|
|
| 195 |
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
|
| 196 |
transcription += transcription_segment
|
| 197 |
|
| 198 |
+
if verbose:
|
| 199 |
+
yield metrics_output, transcription, None
|
| 200 |
|
| 201 |
# Final output with download option
|
| 202 |
transcription_file = save_transcription(transcription)
|
|
|
|
| 206 |
yield f"An error occurred: {str(e)}", "", None
|
| 207 |
|
| 208 |
finally:
|
| 209 |
+
# Clean up downloaded and trimmed files
|
| 210 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 211 |
try:
|
| 212 |
os.remove(audio_path)
|
| 213 |
except:
|
| 214 |
pass
|
| 215 |
+
if start_time is not None or end_time is not None:
|
| 216 |
+
try:
|
| 217 |
+
os.remove(trimmed_audio_path)
|
| 218 |
+
except:
|
| 219 |
+
pass
|
| 220 |
|
| 221 |
def save_transcription(transcription):
|
| 222 |
file_path = tempfile.mktemp(suffix='.txt')
|
|
|
|
| 230 |
inputs=[
|
| 231 |
gr.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"),
|
| 232 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
| 233 |
+
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
|
| 234 |
+
gr.Number(label="Start Time (seconds)", value=0, optional=True),
|
| 235 |
+
gr.Number(label="End Time (seconds)", optional=True),
|
| 236 |
+
gr.Checkbox(label="Verbose Output", value=False)
|
| 237 |
],
|
| 238 |
outputs=[
|
| 239 |
gr.Textbox(label="Transcription Metrics and Verbose Messages", live=True),
|
| 240 |
gr.Textbox(label="Transcription", live=True),
|
| 241 |
+
gr.File(label="Download Transcription")
|
| 242 |
],
|
| 243 |
title="Faster Whisper Multi-Input Transcription",
|
| 244 |
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper (GitHub version). Adjust the batch size and choose a download method.",
|
| 245 |
examples=[
|
| 246 |
+
["https://www.youtube.com/watch?v=daQ_hqA6HDo", 16, "yt-dlp", 0, None, False],
|
| 247 |
+
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", 16, "ffmpeg", 0, 300, True],
|
| 248 |
+
["path/to/local/audio.mp3", 16, "yt-dlp", 60, 180, False]
|
| 249 |
],
|
| 250 |
cache_examples=False # Prevents automatic processing of examples
|
| 251 |
)
|
| 252 |
|
| 253 |
+
iface.launch()
|