File size: 6,582 Bytes
aff296f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import gc
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer

DEFAULT_MODEL_SMALL = "vandijklab/C2S-Scale-Gemma-2-2B"
DEFAULT_MODEL_LARGE = "vandijklab/C2S-Scale-Gemma-2-27B"

MODEL_CACHE = {"id": None, "tokenizer": None, "model": None}

def vram_gb():
    if torch.cuda.is_available():
        props = torch.cuda.get_device_properties(0)
        return props.total_memory / (1024**3)
    return 0.0

def build_prompt(gene_list, species="Homo sapiens"):
    if isinstance(gene_list, str):
        # permitir lista separada por comas/espacios/nuevas líneas
        raw = [g.strip() for g in gene_list.replace("\n", ",").split(",") if g.strip()]
        genes = ", ".join(raw)
    else:
        genes = ", ".join(gene_list)
    return (
        f"The following is a list of gene names ordered by descending expression level "
        f"in a {species} cell. Your task is to give the cell type which this cell belongs "
        f"to based on its gene expression.\n"
        f"Cell sentence: {genes}.\n"
        f"The cell type corresponding to these genes is:"
    )

def unload():
    MODEL_CACHE["id"] = None
    MODEL_CACHE["tokenizer"] = None
    MODEL_CACHE["model"] = None
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

def load_model(model_id, quantization):
    """
    Carga perezosa del modelo. Para 27B se recomienda A100 80GB.
    quantization: 'none' o '8bit' (requiere bitsandbytes).
    """
    if MODEL_CACHE["id"] == model_id and MODEL_CACHE["model"] is not None:
        return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"]

    unload()

    dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
    device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}

    kwargs = dict(torch_dtype=dtype, device_map=device_map, low_cpu_mem_usage=True)

    if quantization == "8bit":
        try:
            import bitsandbytes as bnb  # noqa: F401
            kwargs.update(dict(load_in_8bit=True))
        except Exception:
            # Si no está disponible, caemos a sin cuantizar
            pass

    tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
    mdl = AutoModelForCausalLM.from_pretrained(model_id, **kwargs).eval()

    MODEL_CACHE["id"] = model_id
    MODEL_CACHE["tokenizer"] = tok
    MODEL_CACHE["model"] = mdl
    return tok, mdl

def infer(model_id, species, genes_text, max_new_tokens, temperature, top_p, top_k, repetition_penalty, quantization):
    # chequeo sencillo de VRAM con guía para 27B
    mem = vram_gb()
    warn = ""
    if "27B" in model_id:
        if mem < 60 and quantization != "8bit":
            warn = (
                f"⚠️ Detectada VRAM ~{mem:.1f}GB. Para 27B se recomienda A100 80GB "
                f"o usar 8-bit (aun así puede ser insuficiente en T4)."
            )

    tok, mdl = load_model(model_id, quantization)
    prompt = build_prompt(genes_text, species=species)
    inputs = tok(prompt, return_tensors="pt")
    if torch.cuda.is_available():
        inputs = {k: v.to(mdl.device) for k, v in inputs.items()}

    streamer = TextIteratorStreamer(tok, skip_special_tokens=True)
    gen_kwargs = dict(
        **inputs,
        max_new_tokens=int(max_new_tokens),
        do_sample=True,
        temperature=float(temperature),
        top_p=float(top_p),
        top_k=int(top_k),
        repetition_penalty=float(repetition_penalty),
        eos_token_id=tok.eos_token_id,
        streamer=streamer,
    )

    # streaming
    import threading
    output_text = ""
    def _gen():
        with torch.no_grad():
            mdl.generate(**gen_kwargs)

    thread = threading.Thread(target=_gen)
    thread.start()
    for new_text in streamer:
        output_text += new_text
        yield (warn, prompt, output_text)
    thread.join()

with gr.Blocks(title="C2S-Scale (Gemma-2) — Single-cell Biology") as demo:
    gr.Markdown(
        """
        # C2S-Scale (Gemma-2) for single-cell biology
        Infiere **tipo celular** a partir de una *cell sentence* (genes ordenados por expresión).
        - Modelos: `vandijklab/C2S-Scale-Gemma-2-2B` (ligero), `vandijklab/C2S-Scale-Gemma-2-27B` (pesado).  
        - Selecciona GPU en Settings del Space para mejor rendimiento.

        **Nota:** 27B requiere GPU grande (idealmente A100 80GB). En T4, incluso con 8-bit, puede no cargar.
        """
    )
    with gr.Row():
        model_id = gr.Dropdown(
            choices=[DEFAULT_MODEL_SMALL, DEFAULT_MODEL_LARGE],
            value=DEFAULT_MODEL_SMALL,
            label="Modelo"
        )
        quantization = gr.Radio(["none", "8bit"], value="none", label="Cuantización (experimental)")
        species = gr.Dropdown(["Homo sapiens", "Mus musculus", "Danio rerio", "Custom…"], value="Homo sapiens", label="Especie")
        species_custom = gr.Textbox(value="", label="Especie (si elegiste Custom…)", visible=False)

    def _toggle_species(choice):
        return gr.update(visible=(choice == "Custom…"))
    species.change(_toggle_species, species, species_custom)

    example_genes = "MALAT1, RPLP0, RPL13A, ACTB, RPS27A, PTPRC, CD3D, CD3E, CCR7, IL7R, LTB, TRAC, CD27, CD4, CCR6, CXCR5"
    genes_text = gr.Textbox(value=example_genes, lines=6, label="Cell sentence (lista de genes ordenados por expresión ↓)")

    with gr.Accordion("Parámetros de generación", open=False):
        max_new_tokens = gr.Slider(8, 256, value=64, step=1, label="max_new_tokens")
        temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature")
        top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="top_p")
        top_k = gr.Slider(1, 200, value=50, step=1, label="top_k")
        repetition_penalty = gr.Slider(0.8, 1.5, value=1.05, step=0.01, label="repetition_penalty")

    warn_box = gr.Markdown("")
    prompt_box = gr.Code(label="Prompt efectivo", language="text")
    output_box = gr.Textbox(label="Salida del modelo (stream)")

    def _species_value(sp, custom):
        return custom if sp == "Custom…" and custom.strip() else sp

    run_btn = gr.Button("🚀 Inferir tipo celular")
    run_btn.click(
        fn=lambda mid, sp, spc, genes, mx, temp, tp, tk, rp, q: infer(
            mid, _species_value(sp, spc), genes, mx, temp, tp, tk, rp, q
        ),
        inputs=[model_id, species, species_custom, genes_text, max_new_tokens, temperature, top_p, top_k, repetition_penalty, quantization],
        outputs=[warn_box, prompt_box, output_box]
    )

if __name__ == "__main__":
    demo.launch()