Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python | |
| import os | |
| import random | |
| import uuid | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import spaces | |
| from typing import Tuple | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| DESCRIPTION = """# InterDiffusion-4.0 | |
| ### [https://huggingface.co/cutycat2000x/InterDiffusion-4.0](https://huggingface.co/cutycat2000x/InterDiffusion-4.0)""" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| DEFAULT_STYLE_NAME = "(LoRA)" | |
| def save_image(img): | |
| filename = str(uuid.uuid4()) + ".png" | |
| img.save(filename) | |
| return filename | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| return random.randint(0, MAX_SEED) if randomize_seed else seed | |
| style_list = [ | |
| { | |
| "name": DEFAULT_STYLE_NAME, | |
| "prompt": "{prompt}", | |
| "negative_prompt": "", | |
| }, | |
| ] | |
| styles = {s["name"]: (s["prompt"], s["negative_prompt"]) for s in style_list} | |
| STYLE_NAMES = list(styles.keys()) | |
| def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: | |
| p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
| return p.replace("{prompt}", positive), n + negative | |
| if torch.cuda.is_available(): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "cutycat2000x/InterDiffusion-4.0", | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| ) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights("cutycat2000x/LoRA2", weight_name="lora.safetensors", adapter_name="adapt") | |
| pipe.set_adapters("adapt") | |
| pipe.to("cuda") | |
| def generate(prompt, negative_prompt, style, use_negative_prompt, num_inference_steps, | |
| num_images_per_prompt, seed, width, height, guidance_scale, randomize_seed, progress=gr.Progress(track_tqdm=True)): | |
| seed = randomize_seed_fn(seed, randomize_seed) | |
| if not use_negative_prompt: | |
| negative_prompt = "" | |
| prompt, negative_prompt = apply_style(style, prompt, negative_prompt) | |
| result = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| cross_attention_kwargs={"scale": 0.65}, | |
| output_type="pil" | |
| ) | |
| return result.images, seed | |
| examples = [ | |
| 'a smiling girl with sparkles in her eyes, walking in a garden, in the morning --style anime', | |
| 'firewatch landscape, Graphic Novel, Pastel Art...', | |
| 'Cat on a tree sitting in between parrots.', | |
| 'cat, 4k, hyperrealistic, Cinematic, unreal engine 5', | |
| 'cinematic closeup of burning skull', | |
| 'frozen elsa', | |
| 'A rainbow tree, anime style, tree in focus', | |
| 'A cat holding a sign that reads "Hello World"', | |
| 'Odette the butterfly goddess wondering in the cosmos' | |
| ] | |
| css = ''' | |
| .gradio-container{max-width: 560px !important} | |
| h1{text-align:center} | |
| footer { visibility: hidden } | |
| ''' | |
| with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Prompt", placeholder="Enter your prompt", lines=1 | |
| ) | |
| run_button = gr.Button("Run") | |
| result = gr.Gallery(label="Result", columns=1, preview=True) | |
| with gr.Accordion("Advanced options", open=False): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
| negative_prompt = gr.Textbox(label="Negative prompt", lines=1, visible=True) | |
| num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=60, step=1, value=30) | |
| num_images_per_prompt = gr.Slider(label="Images", minimum=1, maximum=5, step=1, value=2) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024) | |
| height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024) | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=6.0) | |
| style_selection = gr.Radio(label="Image Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=[result, seed], | |
| fn=generate, | |
| cache_examples=False | |
| ) | |
| use_negative_prompt.change( | |
| lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| ) | |
| prompt.submit( | |
| fn=generate, | |
| inputs=[prompt, negative_prompt, style_selection, use_negative_prompt, | |
| num_inference_steps, num_images_per_prompt, seed, | |
| width, height, guidance_scale, randomize_seed], | |
| outputs=[result, seed], | |
| ) | |
| run_button.click( | |
| fn=generate, | |
| inputs=[prompt, negative_prompt, style_selection, use_negative_prompt, | |
| num_inference_steps, num_images_per_prompt, seed, | |
| width, height, guidance_scale, randomize_seed], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(show_api=False, debug=False) | |