app.py
    CHANGED
    
    | @@ -116,6 +116,7 @@ def generate_monocular_depth_maps(img_list, depth_prior_name): | |
| 116 | 
             
                      depth = pipe(image)["predicted_depth"].numpy()
         | 
| 117 | 
             
                      depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_LANCZOS4)
         | 
| 118 | 
             
                      focallength_px = 200
         | 
|  | |
| 119 | 
             
                      depth_list.append(depth)
         | 
| 120 | 
             
                      focallength_px_list.append(focallength_px)
         | 
| 121 | 
             
                      #np.savez_compressed(path_depthanything, depth=depth)  
         | 
| @@ -138,6 +139,7 @@ def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sk | |
| 138 | 
             
                model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)  
         | 
| 139 | 
             
                output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
         | 
| 140 | 
             
                mode = GlobalAlignerMode.PointCloudOptimizer  
         | 
|  | |
| 141 | 
             
                scene = global_aligner(output, device=device, mode=mode, verbose=not silent, shared_focal = True, temporal_smoothing_weight=0.01, translation_weight=1.0,
         | 
| 142 | 
             
                                           flow_loss_weight=0.01, flow_loss_start_epoch=0.1, flow_loss_thre=25, use_self_mask=True,
         | 
| 143 | 
             
                                           num_total_iter=300, empty_cache= len(filelist) > 72)
         | 
| @@ -192,13 +194,6 @@ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, grad | |
| 192 | 
             
                                 [os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
         | 
| 193 | 
             
                                  os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
         | 
| 194 | 
             
                                  os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
         | 
| 195 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00003.jpg'),
         | 
| 196 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00004.jpg'),
         | 
| 197 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00005.jpg'),
         | 
| 198 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00006.jpg'),
         | 
| 199 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00007.jpg'),
         | 
| 200 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00008.jpg'),
         | 
| 201 | 
            -
                                  os.path.join(HERE_PATH, 'example/bear/00009.jpg'),
         | 
| 202 | 
             
                                  ]
         | 
| 203 | 
             
                            ],
         | 
| 204 | 
             
                            [
         | 
|  | |
| 116 | 
             
                      depth = pipe(image)["predicted_depth"].numpy()
         | 
| 117 | 
             
                      depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_LANCZOS4)
         | 
| 118 | 
             
                      focallength_px = 200
         | 
| 119 | 
            +
                      print(depth.max(),depth.min())
         | 
| 120 | 
             
                      depth_list.append(depth)
         | 
| 121 | 
             
                      focallength_px_list.append(focallength_px)
         | 
| 122 | 
             
                      #np.savez_compressed(path_depthanything, depth=depth)  
         | 
|  | |
| 139 | 
             
                model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)  
         | 
| 140 | 
             
                output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
         | 
| 141 | 
             
                mode = GlobalAlignerMode.PointCloudOptimizer  
         | 
| 142 | 
            +
                print(output)
         | 
| 143 | 
             
                scene = global_aligner(output, device=device, mode=mode, verbose=not silent, shared_focal = True, temporal_smoothing_weight=0.01, translation_weight=1.0,
         | 
| 144 | 
             
                                           flow_loss_weight=0.01, flow_loss_start_epoch=0.1, flow_loss_thre=25, use_self_mask=True,
         | 
| 145 | 
             
                                           num_total_iter=300, empty_cache= len(filelist) > 72)
         | 
|  | |
| 194 | 
             
                                 [os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
         | 
| 195 | 
             
                                  os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
         | 
| 196 | 
             
                                  os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 197 | 
             
                                  ]
         | 
| 198 | 
             
                            ],
         | 
| 199 | 
             
                            [
         | 
    	
        croco/models/__pycache__/pos_embed.cpython-311.pyc
    CHANGED
    
    | Binary files a/croco/models/__pycache__/pos_embed.cpython-311.pyc and b/croco/models/__pycache__/pos_embed.cpython-311.pyc differ | 
|  | 
    	
        third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc
    CHANGED
    
    | Binary files a/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc and b/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc differ | 
|  | 
    	
        third_party/RAFT/core/extractor.py
    CHANGED
    
    | @@ -312,7 +312,7 @@ class ResNetFPN(nn.Module): | |
| 312 | 
             
                                nn.init.constant_(m.weight, 1)
         | 
| 313 | 
             
                            if m.bias is not None:
         | 
| 314 | 
             
                                nn.init.constant_(m.bias, 0)
         | 
| 315 | 
            -
             | 
| 316 | 
             
                    if self.init_weight:
         | 
| 317 | 
             
                        from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights
         | 
| 318 | 
             
                        if args.pretrain == 'resnet18':
         | 
|  | |
| 312 | 
             
                                nn.init.constant_(m.weight, 1)
         | 
| 313 | 
             
                            if m.bias is not None:
         | 
| 314 | 
             
                                nn.init.constant_(m.bias, 0)
         | 
| 315 | 
            +
                    #print('****',args.pretrain, self.init_weight)
         | 
| 316 | 
             
                    if self.init_weight:
         | 
| 317 | 
             
                        from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights
         | 
| 318 | 
             
                        if args.pretrain == 'resnet18':
         | 
