Spaces:
Sleeping
Sleeping
| from diffusers import ( | |
| StableDiffusionControlNetImg2ImgPipeline, | |
| ControlNetModel, | |
| LCMScheduler, | |
| AutoencoderTiny, | |
| ) | |
| from compel import Compel | |
| import torch | |
| from utils.canny_gpu import SobelOperator | |
| try: | |
| import intel_extension_for_pytorch as ipex # type: ignore | |
| except: | |
| pass | |
| from pydantic import BaseModel, Field | |
| from PIL import Image | |
| import psutil | |
| import math | |
| import time | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| taesd_model = "madebyollin/taesd" | |
| controlnet_model = "thibaud/controlnet-sd21-canny-diffusers" | |
| base_model = "stabilityai/sd-turbo" | |
| default_prompt = "Portrait of The Joker halloween costume, face painting, with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" | |
| default_negative_prompt = "blurry, low quality, render, 3D, oversaturated, horror, zombie" | |
| class Pipeline: | |
| class Info(BaseModel): | |
| name: str = "controlnet+sd15Turbo" | |
| title: str = "SDv1.5 Turbo + Controlnet" | |
| description: str = "Generates an image from a text prompt" | |
| input_mode: str = "image" | |
| class InputParams(BaseModel): | |
| prompt: str = Field( | |
| default_prompt, | |
| title="Prompt", | |
| field="textarea", | |
| id="prompt", | |
| ) | |
| negative_prompt: str = Field( | |
| default_negative_prompt, | |
| title="Negative Prompt", | |
| field="textarea", | |
| id="negative_prompt", | |
| hide=True, | |
| ) | |
| seed: int = Field( | |
| 4402026899276587, min=0, title="Seed", field="seed", hide=True, id="seed" | |
| ) | |
| steps: int = Field( | |
| 1, min=1, max=15, title="Steps", field="range", hide=True, id="steps" | |
| ) | |
| width: int = Field( | |
| 640, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
| ) | |
| height: int = Field( | |
| 480, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
| ) | |
| guidance_scale: float = Field( | |
| 1.0, | |
| min=0, | |
| max=10, | |
| step=0.001, | |
| title="Guidance Scale", | |
| field="range", | |
| hide=True, | |
| id="guidance_scale", | |
| ) | |
| strength: float = Field( | |
| 0.8, | |
| min=0.10, | |
| max=1.0, | |
| step=0.001, | |
| title="Strength", | |
| field="range", | |
| hide=True, | |
| id="strength", | |
| ) | |
| controlnet_scale: float = Field( | |
| 0.2, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Scale", | |
| field="range", | |
| hide=True, | |
| id="controlnet_scale", | |
| ) | |
| controlnet_start: float = Field( | |
| 0.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Start", | |
| field="range", | |
| hide=True, | |
| id="controlnet_start", | |
| ) | |
| controlnet_end: float = Field( | |
| 1.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet End", | |
| field="range", | |
| hide=True, | |
| id="controlnet_end", | |
| ) | |
| canny_low_threshold: float = Field( | |
| 0.31, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Canny Low Threshold", | |
| field="range", | |
| hide=True, | |
| id="canny_low_threshold", | |
| ) | |
| canny_high_threshold: float = Field( | |
| 0.125, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Canny High Threshold", | |
| field="range", | |
| hide=True, | |
| id="canny_high_threshold", | |
| ) | |
| debug_canny: bool = Field( | |
| False, | |
| title="Debug Canny", | |
| field="checkbox", | |
| hide=True, | |
| id="debug_canny", | |
| ) | |
| def __init__(self, device: torch.device, torch_dtype: torch.dtype): | |
| controlnet_canny = ControlNetModel.from_pretrained( | |
| controlnet_model, torch_dtype=torch_dtype | |
| ).to(device) | |
| self.pipes = {} | |
| self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
| base_model, | |
| controlnet=controlnet_canny, | |
| ) | |
| self.pipe.vae = AutoencoderTiny.from_pretrained( | |
| taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
| ).to(device) | |
| self.canny_torch = SobelOperator(device=device) | |
| self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.set_progress_bar_config(disable=False) | |
| self.pipe.to(device=device, dtype=torch_dtype).to(device) | |
| if device.type != "mps": | |
| self.pipe.unet.to(memory_format=torch.channels_last) | |
| if psutil.virtual_memory().total < 64 * 1024**3: | |
| self.pipe.enable_attention_slicing() | |
| self.pipe.compel_proc = Compel( | |
| tokenizer=self.pipe.tokenizer, | |
| text_encoder=self.pipe.text_encoder, | |
| truncate_long_prompts=True, | |
| ) | |
| self.pipe.vae = AutoencoderTiny.from_pretrained( | |
| taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
| ).to(device) | |
| if bool(os.getenv("TORCH_COMPILE")): | |
| self.pipe.unet = torch.compile( | |
| self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe.vae = torch.compile( | |
| self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe( | |
| prompt="warmup", | |
| image=[Image.new("RGB", (640, 480))], | |
| control_image=[Image.new("RGB", (640, 480))], | |
| ) | |
| def predict(self, params: "Pipeline.InputParams", image) -> Image.Image: | |
| generator = torch.manual_seed(params.seed) | |
| prompt_embeds = self.pipe.compel_proc(params.prompt) | |
| control_image = self.canny_torch( | |
| image, params.canny_low_threshold, params.canny_high_threshold | |
| ) | |
| steps = params.steps | |
| strength = params.strength | |
| if int(steps * strength) < 1: | |
| steps = math.ceil(1 / max(0.10, strength)) | |
| last_time = time.time() | |
| results = self.pipe( | |
| image=image, | |
| control_image=control_image, | |
| prompt_embeds=prompt_embeds, | |
| generator=generator, | |
| strength=strength, | |
| num_inference_steps=steps, | |
| guidance_scale=params.guidance_scale, | |
| width=params.width, | |
| height=params.height, | |
| output_type="pil", | |
| controlnet_conditioning_scale=params.controlnet_scale, | |
| control_guidance_start=params.controlnet_start, | |
| control_guidance_end=params.controlnet_end, | |
| ) | |
| print(f"Time taken: {time.time() - last_time}") | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| return None | |
| result_image = results.images[0] | |
| """ | |
| if os.getenv("CONTROL_NET_OVERLAY", True): | |
| # paste control_image on top of result_image | |
| w0, h0 = (200, 200) | |
| control_image = control_image.resize((w0, h0)) | |
| w1, h1 = result_image.size | |
| result_image.paste(control_image, (w1 - w0, h1 - h0)) | |
| """ | |
| return result_image |