Spaces:
Sleeping
Sleeping
Jon Taylor
commited on
Commit
·
6776a75
1
Parent(s):
70de1d6
added reference image to test diffusion
Browse files- app/pipeline.py +51 -2
- app/pipeline_test.py +4 -1
- requirements.txt +1 -0
app/pipeline.py
CHANGED
|
@@ -13,13 +13,16 @@ try:
|
|
| 13 |
except:
|
| 14 |
pass
|
| 15 |
|
| 16 |
-
import psutil
|
| 17 |
from pydantic import BaseModel, Field
|
| 18 |
from PIL import Image
|
|
|
|
| 19 |
import math
|
| 20 |
import time
|
| 21 |
import os
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
taesd_model = "madebyollin/taesd"
|
| 24 |
controlnet_model = "thibaud/controlnet-sd21-canny-diffusers"
|
| 25 |
base_model = "stabilityai/sd-turbo"
|
|
@@ -168,7 +171,7 @@ class Pipeline:
|
|
| 168 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 169 |
).to(device)
|
| 170 |
|
| 171 |
-
if os.getenv("TORCH_COMPILE"
|
| 172 |
self.pipe.unet = torch.compile(
|
| 173 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
| 174 |
)
|
|
@@ -181,3 +184,49 @@ class Pipeline:
|
|
| 181 |
image=[Image.new("RGB", (768, 768))],
|
| 182 |
control_image=[Image.new("RGB", (768, 768))],
|
| 183 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
except:
|
| 14 |
pass
|
| 15 |
|
|
|
|
| 16 |
from pydantic import BaseModel, Field
|
| 17 |
from PIL import Image
|
| 18 |
+
import psutil
|
| 19 |
import math
|
| 20 |
import time
|
| 21 |
import os
|
| 22 |
|
| 23 |
+
from dotenv import load_dotenv
|
| 24 |
+
load_dotenv()
|
| 25 |
+
|
| 26 |
taesd_model = "madebyollin/taesd"
|
| 27 |
controlnet_model = "thibaud/controlnet-sd21-canny-diffusers"
|
| 28 |
base_model = "stabilityai/sd-turbo"
|
|
|
|
| 171 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 172 |
).to(device)
|
| 173 |
|
| 174 |
+
if bool(os.getenv("TORCH_COMPILE")):
|
| 175 |
self.pipe.unet = torch.compile(
|
| 176 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
| 177 |
)
|
|
|
|
| 184 |
image=[Image.new("RGB", (768, 768))],
|
| 185 |
control_image=[Image.new("RGB", (768, 768))],
|
| 186 |
)
|
| 187 |
+
|
| 188 |
+
def predict(self, params: "Pipeline.InputParams", image) -> Image.Image:
|
| 189 |
+
generator = torch.manual_seed(params.seed)
|
| 190 |
+
prompt_embeds = self.pipe.compel_proc(params.prompt)
|
| 191 |
+
control_image = self.canny_torch(
|
| 192 |
+
image, params.canny_low_threshold, params.canny_high_threshold
|
| 193 |
+
)
|
| 194 |
+
steps = params.steps
|
| 195 |
+
strength = params.strength
|
| 196 |
+
if int(steps * strength) < 1:
|
| 197 |
+
steps = math.ceil(1 / max(0.10, strength))
|
| 198 |
+
last_time = time.time()
|
| 199 |
+
results = self.pipe(
|
| 200 |
+
image=image,
|
| 201 |
+
control_image=control_image,
|
| 202 |
+
prompt_embeds=prompt_embeds,
|
| 203 |
+
generator=generator,
|
| 204 |
+
strength=strength,
|
| 205 |
+
num_inference_steps=steps,
|
| 206 |
+
guidance_scale=params.guidance_scale,
|
| 207 |
+
width=params.width,
|
| 208 |
+
height=params.height,
|
| 209 |
+
output_type="pil",
|
| 210 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
| 211 |
+
control_guidance_start=params.controlnet_start,
|
| 212 |
+
control_guidance_end=params.controlnet_end,
|
| 213 |
+
)
|
| 214 |
+
print(f"Time taken: {time.time() - last_time}")
|
| 215 |
+
|
| 216 |
+
nsfw_content_detected = (
|
| 217 |
+
results.nsfw_content_detected[0]
|
| 218 |
+
if "nsfw_content_detected" in results
|
| 219 |
+
else False
|
| 220 |
+
)
|
| 221 |
+
if nsfw_content_detected:
|
| 222 |
+
return None
|
| 223 |
+
result_image = results.images[0]
|
| 224 |
+
|
| 225 |
+
if os.getenv("CONTROL_NET_OVERLAY"):
|
| 226 |
+
# paste control_image on top of result_image
|
| 227 |
+
w0, h0 = (200, 200)
|
| 228 |
+
control_image = control_image.resize((w0, h0))
|
| 229 |
+
w1, h1 = result_image.size
|
| 230 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
| 231 |
+
|
| 232 |
+
return result_image
|
app/pipeline_test.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
from pipeline import Pipeline
|
| 2 |
from device import device, torch_dtype
|
|
|
|
| 3 |
|
| 4 |
def main():
|
| 5 |
p = Pipeline(device, torch_dtype)
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
if __name__ == "__main__":
|
| 9 |
main()
|
|
|
|
| 1 |
from pipeline import Pipeline
|
| 2 |
from device import device, torch_dtype
|
| 3 |
+
from diffusers.utils import load_image
|
| 4 |
|
| 5 |
def main():
|
| 6 |
p = Pipeline(device, torch_dtype)
|
| 7 |
+
params = Pipeline.InputParams()
|
| 8 |
+
image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
|
| 9 |
+
p.predict(params, image).show()
|
| 10 |
|
| 11 |
if __name__ == "__main__":
|
| 12 |
main()
|
requirements.txt
CHANGED
|
@@ -10,6 +10,7 @@ pillow
|
|
| 10 |
pydantic
|
| 11 |
utils
|
| 12 |
psutil
|
|
|
|
| 13 |
|
| 14 |
transformers==4.35.2
|
| 15 |
torch==2.1.1
|
|
|
|
| 10 |
pydantic
|
| 11 |
utils
|
| 12 |
psutil
|
| 13 |
+
dotenv
|
| 14 |
|
| 15 |
transformers==4.35.2
|
| 16 |
torch==2.1.1
|