File size: 13,781 Bytes
cf2f35c
 
 
 
 
 
 
 
d3adf4c
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
2f849ec
cf2f35c
 
160e694
 
cf2f35c
160e694
cf2f35c
160e694
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e8f8ba
160e694
 
c5c8aa3
 
 
160e694
 
 
 
c5c8aa3
160e694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf2f35c
160e694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f849ec
7e8f8ba
2f849ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160e694
cf2f35c
160e694
2f849ec
 
cf2f35c
2f849ec
 
 
160e694
 
 
 
 
 
 
2f849ec
160e694
2f849ec
cf2f35c
2f849ec
160e694
2f849ec
 
 
cf2f35c
 
 
160e694
 
2f849ec
 
 
 
 
 
 
 
a2a9a31
160e694
cf2f35c
2f849ec
cf2f35c
 
2f849ec
cf2f35c
2f849ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf2f35c
 
2f849ec
cf2f35c
2f849ec
cf2f35c
160e694
 
cf2f35c
 
7e8f8ba
160e694
7e8f8ba
 
160e694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e8f8ba
160e694
 
 
7e8f8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160e694
7e8f8ba
160e694
 
 
 
 
7e8f8ba
 
2f849ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import psutil
import argparse
import os
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor
from omegaconf import OmegaConf
from wan.models.cache_utils import get_teacache_coefficients
from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel
from wan.models.wan_text_encoder import WanT5EncoderModel
from wan.models.wan_vae import AutoencoderKLWan
from wan.models.wan_image_encoder import CLIPModel
from wan.pipeline.wan_inference_long_pipeline import WanI2VTalkingInferenceLongPipeline
from wan.utils.fp8_optimization import replace_parameters_by_name, convert_weight_dtype_wrapper, convert_model_weight_to_float8
from wan.utils.utils import get_image_to_video_latent, save_videos_grid
import numpy as np
import librosa
import datetime
import random
import math
import subprocess
from moviepy.editor import VideoFileClip
from huggingface_hub import snapshot_download
import shutil
import requests
import uuid

# Device and dtype setup
if torch.cuda.is_available():
    device = "cuda"
    if torch.cuda.get_device_capability()[0] >= 8:
        dtype = torch.bfloat16
    else:
        dtype = torch.float16
else:
    device = "cpu"
    dtype = torch.float32

def filter_kwargs(cls, kwargs):
    import inspect
    sig = inspect.signature(cls.__init__)
    valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
    filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
    return filtered_kwargs

def load_transformer_model(model_version, repo_root):
    transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", f"transformer3d-{model_version}.pt")
    print(f"Loading model: {transformer_path}")
    if os.path.exists(transformer_path):
        state_dict = torch.load(transformer_path, map_location="cpu")
        state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
        m, u = transformer3d.load_state_dict(state_dict, strict=False)
        print(f"Model loaded successfully: {transformer_path}")
        print(f"Missing keys: {len(m)}; Unexpected keys: {len(u)}")
        return transformer3d
    else:
        print(f"Error: Model file does not exist: {transformer_path}")
        return None

def download_file(url, local_path):
    """Download file from URL to local path"""
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()
        with open(local_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        return local_path
    except Exception as e:
        print(f"Error downloading file from {url}: {e}")
        return None

def prepare_input_file(input_path, file_type="image"):
    """Handle local or remote file inputs"""
    if input_path.startswith("http://") or input_path.startswith("https://"):
        ext = ".png" if file_type == "image" else ".wav"
        local_path = os.path.join("temp", f"{uuid.uuid4()}{ext}")
        os.makedirs("temp", exist_ok=True)
        return download_file(input_path, local_path)
    elif os.path.exists(input_path):
        return input_path
    else:
        print(f"Error: {file_type.capitalize()} file {input_path} does not exist")
        return None

# Initialize model paths
REPO_ID = "FrancisRing/StableAvatar"
repo_root = snapshot_download(
    repo_id=REPO_ID,
    allow_patterns=[
        "StableAvatar-1.3B/*",
        "Wan2.1-Fun-V1.1-1.3B-InP/*",
        "wav2vec2-base-960h/*",
        "assets/**",
        "Kim_Vocal_2.onnx",
    ],
)
pretrained_model_name_or_path = os.path.join(repo_root, "Wan2.1-Fun-V1.1-1.3B-InP")
pretrained_wav2vec_path = os.path.join(repo_root, "wav2vec2-base-960h")
audio_separator_model_file = os.path.join(repo_root, "Kim_Vocal_2.onnx")

# Load configuration and models
config = OmegaConf.load("deepspeed_config/wan2.1/wan_civitai.yaml")
sampler_name = "Flow"
clip_sample_n_frames = 81

tokenizer = AutoTokenizer.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
)
text_encoder = WanT5EncoderModel.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
    additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
    low_cpu_mem_usage=True,
    torch_dtype=dtype,
).eval()
vae = AutoencoderKLWan.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
    additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
)
wav2vec_processor = Wav2Vec2Processor.from_pretrained(pretrained_wav2vec_path)
wav2vec = Wav2Vec2Model.from_pretrained(pretrained_wav2vec_path).to("cpu")
clip_image_encoder = CLIPModel.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
).eval()
transformer3d = WanTransformer3DFantasyModel.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
    transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
    low_cpu_mem_usage=False,
    torch_dtype=dtype,
)

# Load default transformer model
load_transformer_model("square", repo_root)

# Initialize scheduler and pipeline
scheduler_dict = {"Flow": FlowMatchEulerDiscreteScheduler}
Choosen_Scheduler = scheduler_dict[sampler_name]
scheduler = Choosen_Scheduler(
    **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs']))
)
pipeline = WanI2VTalkingInferenceLongPipeline(
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    vae=vae,
    transformer=transformer3d,
    clip_image_encoder=clip_image_encoder,
    scheduler=scheduler,
    wav2vec_processor=wav2vec_processor,
    wav2vec=wav2vec,
)

def generate(
    GPU_memory_mode="model_cpu_offload",
    teacache_threshold=0,
    num_skip_start_steps=5,
    image_path=None,
    audio_path=None,
    prompt="",
    negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
    width=512,
    height=512,
    guidance_scale=6.0,
    num_inference_steps=50,
    text_guide_scale=3.0,
    audio_guide_scale=5.0,
    motion_frame=25,
    fps=25,
    overlap_window_length=10,
    seed_param=42,
    overlapping_weight_scheme="uniform"
):
    global pipeline, transformer3d
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    if seed_param < 0:
        seed = random.randint(0, np.iinfo(np.int32).max)
    else:
        seed = seed_param

    # Handle input files
    image_path = prepare_input_file(image_path, "image")
    audio_path = prepare_input_file(audio_path, "audio")
    if not image_path or not audio_path:
        return None, None, "Error: Invalid input file paths"

    # Configure pipeline based on GPU memory mode
    if GPU_memory_mode == "sequential_cpu_offload":
        replace_parameters_by_name(transformer3d, ["modulation"], device=device)
        transformer3d.freqs = transformer3d.freqs.to(device=device)
        pipeline.enable_sequential_cpu_offload(device=device)
    elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
        convert_model_weight_to_float8(transformer3d, exclude_module_name=["modulation"])
        convert_weight_dtype_wrapper(transformer3d, dtype)
        pipeline.enable_model_cpu_offload(device=device)
    elif GPU_memory_mode == "model_cpu_offload":
        pipeline.enable_model_cpu_offload(device=device)
    else:
        pipeline.to(device=device)

    # Enable TeaCache if specified
    if teacache_threshold > 0:
        coefficients = get_teacache_coefficients(pretrained_model_name_or_path)
        pipeline.transformer.enable_teacache(
            coefficients,
            num_inference_steps,
            teacache_threshold,
            num_skip_start_steps=num_skip_start_steps,
        )

    # Perform inference
    with torch.no_grad():
        video_length = int((clip_sample_n_frames - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if clip_sample_n_frames != 1 else 1
        input_video, input_video_mask, clip_image = get_image_to_video_latent(image_path, None, video_length=video_length, sample_size=[height, width])
        sr = 16000
        vocal_input, sample_rate = librosa.load(audio_path, sr=sr)
        sample = pipeline(
            prompt,
            num_frames=video_length,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
            num_inference_steps=num_inference_steps,
            video=input_video,
            mask_video=input_video_mask,
            clip_image=clip_image,
            text_guide_scale=text_guide_scale,
            audio_guide_scale=audio_guide_scale,
            vocal_input_values=vocal_input,
            motion_frame=motion_frame,
            fps=fps,
            sr=sr,
            cond_file_path=image_path,
            overlap_window_length=overlap_window_length,
            seed=seed,
            overlapping_weight_scheme=overlapping_weight_scheme,
        ).videos
        os.makedirs("outputs", exist_ok=True)
        video_path = os.path.join("outputs", f"{timestamp}.mp4")
        save_videos_grid(sample, video_path, fps=fps)
        output_video_with_audio = os.path.join("outputs", f"{timestamp}_audio.mp4")
        subprocess.run([
            "ffmpeg", "-y", "-loglevel", "quiet", "-i", video_path, "-i", audio_path,
            "-c:v", "copy", "-c:a", "aac", "-strict", "experimental",
            output_video_with_audio
        ], check=True)

    return output_video_with_audio, seed, f"Generated outputs/{timestamp}.mp4"

def main():
    parser = argparse.ArgumentParser(description="StableAvatar Inference Script")
    parser.add_argument("--prompt", type=str, default="", help="Text prompt for generation")
    parser.add_argument("--seed", type=int, default=42, help="Random seed, -1 for random")
    parser.add_argument("--input_image", type=str, required=True, help="Path or URL to input image (e.g., ./image.png or https://example.com/image.png)")
    parser.add_argument("--input_audio", type=str, required=True, help="Path or URL to input audio (e.g., ./audio.wav or https://example.com/audio.wav)")
    parser.add_argument("--GPU_memory_mode", type=str, default="model_cpu_offload", choices=["Normal", "model_cpu_offload", "model_cpu_offload_and_qfloat8", "sequential_cpu_offload"], help="GPU memory mode")
    parser.add_argument("--teacache_threshold", type=float, default=0, help="TeaCache threshold, 0 to disable")
    parser.add_argument("--num_skip_start_steps", type=int, default=5, help="Number of start steps to skip")
    parser.add_argument("--negative_prompt", type=str, default="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", help="Negative prompt")
    parser.add_argument("--width", type=int, default=512, help="Output video width")
    parser.add_argument("--height", type=int, default=512, help="Output video height")
    parser.add_argument("--guidance_scale", type=float, default=6.0, help="Guidance scale")
    parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps")
    parser.add_argument("--text_guide_scale", type=float, default=3.0, help="Text guidance scale")
    parser.add_argument("--audio_guide_scale", type=float, default=5.0, help="Audio guidance scale")
    parser.add_argument("--motion_frame", type=int, default=25, help="Motion frame")
    parser.add_argument("--fps", type=int, default=25, help="Frames per second")
    parser.add_argument("--overlap_window_length", type=int, default=10, help="Overlap window length")
    parser.add_argument("--overlapping_weight_scheme", type=str, default="uniform", choices=["uniform", "log"], help="Overlapping weight scheme")

    args = parser.parse_args()

    video_path, seed, message = generate(
        GPU_memory_mode=args.GPU_memory_mode,
        teacache_threshold=args.teacache_threshold,
        num_skip_start_steps=args.num_skip_start_steps,
        image_path=args.input_image,
        audio_path=args.input_audio,
        prompt=args.prompt,
        negative_prompt=args.negative_prompt,
        width=args.width,
        height=args.height,
        guidance_scale=args.guidance_scale,
        num_inference_steps=args.num_inference_steps,
        text_guide_scale=args.text_guide_scale,
        audio_guide_scale=args.audio_guide_scale,
        motion_frame=args.motion_frame,
        fps=args.fps,
        overlap_window_length=args.overlap_window_length,
        seed_param=args.seed,
        overlapping_weight_scheme=args.overlapping_weight_scheme
    )

    if video_path:
        print(f"{message}\nSeed: {seed}")
    else:
        print("Generation failed.")

if __name__ == "__main__":
    main()