File size: 12,968 Bytes
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9a31
cf2f35c
 
a2a9a31
cf2f35c
a2a9a31
cf2f35c
 
 
 
 
 
 
 
 
a2a9a31
cf2f35c
 
 
 
 
 
a2a9a31
c5c8aa3
a2a9a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf2f35c
c5c8aa3
a2a9a31
 
 
 
c5c8aa3
 
 
 
a2a9a31
cf2f35c
a2a9a31
 
cf2f35c
a2a9a31
 
 
 
 
 
 
cf2f35c
a2a9a31
 
 
 
 
cf2f35c
a2a9a31
 
 
cf2f35c
a2a9a31
 
 
c5c8aa3
a2a9a31
 
 
 
 
 
cf2f35c
c5c8aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9a31
 
 
c5c8aa3
 
 
a2a9a31
 
 
cf2f35c
a2a9a31
c5c8aa3
 
 
cf2f35c
c5c8aa3
a2a9a31
cf2f35c
a2a9a31
cf2f35c
a2a9a31
cf2f35c
a2a9a31
cf2f35c
 
 
a2a9a31
cf2f35c
a2a9a31
c5c8aa3
 
cf2f35c
a2a9a31
cf2f35c
a2a9a31
 
 
cf2f35c
c5c8aa3
 
 
 
 
 
 
cf2f35c
a2a9a31
 
cf2f35c
a2a9a31
cf2f35c
a2a9a31
 
 
 
cf2f35c
a2a9a31
 
cf2f35c
 
 
a2a9a31
cf2f35c
a2a9a31
 
cf2f35c
a2a9a31
 
 
c5c8aa3
 
a2a9a31
 
 
 
 
 
c5c8aa3
 
a2a9a31
 
 
 
c5c8aa3
 
cf2f35c
a2a9a31
cf2f35c
a2a9a31
 
 
 
cf2f35c
c5c8aa3
 
 
 
 
 
 
 
 
a2a9a31
c5c8aa3
a2a9a31
c5c8aa3
 
 
 
 
 
 
a2a9a31
c5c8aa3
 
a2a9a31
c5c8aa3
 
a2a9a31
cf2f35c
a2a9a31
 
c5c8aa3
 
 
 
 
 
 
cf2f35c
a2a9a31
 
 
 
 
 
 
cf2f35c
 
a2a9a31
c5c8aa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
import psutil
import argparse
import os
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor
from omegaconf import OmegaConf
from wan.models.cache_utils import get_teacache_coefficients
from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel
from wan.models.wan_text_encoder import WanT5EncoderModel
from wan.models.wan_vae import AutoencoderKLWan
from wan.models.wan_image_encoder import CLIPModel
from wan.pipeline.wan_inference_long_pipeline import WanI2VTalkingInferenceLongPipeline
from wan.utils.fp8_optimization import replace_parameters_by_name, convert_weight_dtype_wrapper, convert_model_weight_to_float8
from wan.utils.utils import get_image_to_video_latent, save_videos_grid
import numpy as np
import librosa
import datetime
import random
import math
import subprocess
from huggingface_hub import snapshot_download
import requests
import shutil

# --- 全域設定 ---
if torch.cuda.is_available():
    device = "cuda"
    if torch.cuda.get_device_capability()[0] >= 8:
        dtype = torch.bfloat16
    else:
        dtype = torch.float16
else:
    device = "cpu"
    dtype = torch.float32

def filter_kwargs(cls, kwargs):
    """過濾掉不屬於類別建構函式的關鍵字參數"""
    import inspect
    sig = inspect.signature(cls.__init__)
    valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
    filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
    return filtered_kwargs

def download_file(url, local_path):
    """從 URL 下載檔案,如果 URL 是本地路徑則直接返回"""
    if url.startswith(('http://', 'https://')):
        print(f"從 {url} 下載檔案中...")
        try:
            with requests.get(url, stream=True) as r:
                r.raise_for_status()
                with open(local_path, 'wb') as f:
                    for chunk in r.iter_content(chunk_size=8192):
                        f.write(chunk)
            print(f"檔案已儲存至 {local_path}")
            return local_path
        except requests.exceptions.RequestException as e:
            print(f"錯誤:無法下載檔案 {url}{e}")
            return None
    elif os.path.exists(url):
        print(f"使用本地檔案: {url}")
        return url
    else:
        print(f"錯誤:檔案或 URL 不存在: {url}")
        return None

def setup_models(repo_root, model_version):
    """載入所有必要的模型和設定"""
    pretrained_model_name_or_path = os.path.join(repo_root, "Wan2.1-Fun-V1.1-1.3B-InP")
    pretrained_wav2vec_path = os.path.join(repo_root, "wav2vec2-base-960h")

    config_path = os.path.join(repo_root, "deepspeed_config/wan2.1/wan_civitai.yaml")
    if not os.path.exists(config_path):
         raise FileNotFoundError(f"設定檔未找到: {config_path}")
    config = OmegaConf.load(config_path)
    sampler_name = "Flow"
    
    print("正在載入 Tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')))
    
    print("正在載入 Text Encoder...")
    text_encoder = WanT5EncoderModel.from_pretrained(
        os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
        additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
        low_cpu_mem_usage=True,
        torch_dtype=dtype,
    ).eval()
    
    print("正在載入 VAE...")
    vae = AutoencoderKLWan.from_pretrained(
        os.path.join(pretrained_model_name_or_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
        additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
    )
    
    print("正在載入 Wav2Vec...")
    wav2vec_processor = Wav2Vec2Processor.from_pretrained(pretrained_wav2vec_path)
    wav2vec = Wav2Vec2Model.from_pretrained(pretrained_wav2vec_path).to("cpu")
    
    print("正在載入 CLIP Image Encoder...")
    clip_image_encoder = CLIPModel.from_pretrained(os.path.join(pretrained_model_name_or_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))).eval()
    
    print("正在載入 Transformer 3D 基礎模型...")
    transformer3d = WanTransformer3DFantasyModel.from_pretrained(
        os.path.join(pretrained_model_name_or_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
        transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
        low_cpu_mem_usage=False,
        torch_dtype=dtype,
    )

    # <<< FIX 1: 載入 StableAvatar 專用權重 >>>
    if model_version == "square":
        transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-square.pt")
    else: # rec_vec
        transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-rec-vec.pt")

    if os.path.exists(transformer_path):
        print(f"正在從 {transformer_path} 載入 StableAvatar 權重...")
        state_dict = torch.load(transformer_path, map_location="cpu")
        state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
        m, u = transformer3d.load_state_dict(state_dict, strict=False)
        print(f"StableAvatar 權重載入成功。 Missing keys: {len(m)}; Unexpected keys: {len(u)}")
    else:
        raise FileNotFoundError(f"找不到 StableAvatar 權重檔案:{transformer_path}。請確保模型已完整下載。")
    # <<< END OF FIX 1 >>>

    scheduler_class = { "Flow": FlowMatchEulerDiscreteScheduler }[sampler_name]
    scheduler = scheduler_class(**filter_kwargs(scheduler_class, OmegaConf.to_container(config['scheduler_kwargs'])))
    
    print("正在建立 Pipeline...")
    pipeline = WanI2VTalkingInferenceLongPipeline(
        tokenizer=tokenizer, text_encoder=text_encoder, vae=vae,
        transformer=transformer3d, clip_image_encoder=clip_image_encoder,
        scheduler=scheduler, wav2vec_processor=wav2vec_processor, wav2vec=wav2vec,
    )
    
    return pipeline, transformer3d, vae

def run_inference(
    pipeline, transformer3d, vae, image_path, audio_path, prompt,
    negative_prompt, seed, output_filename, gpu_memory_mode="model_cpu_offload",
    width=512, height=512, num_inference_steps=50, fps=25, **kwargs
):
    """執行推理以生成影片。"""
    if seed < 0:
        seed = random.randint(0, np.iinfo(np.int32).max)
    print(f"使用的種子: {seed}")

    if gpu_memory_mode == "sequential_cpu_offload":
        pipeline.enable_sequential_cpu_offload(device=device)
    elif gpu_memory_mode == "model_cpu_offload":
        pipeline.enable_model_cpu_offload(device=device)
    else:
        pipeline.to(device=device)

    with torch.no_grad():
        print("正在準備輸入資料...")
        # 由於 get_image_to_video_latent 內部有自己的 vae.config 引用,所以此處警告可忽略
        video_length = 81
        input_video, input_video_mask, clip_image = get_image_to_video_latent(image_path, None, video_length=video_length, sample_size=[height, width])
        
        sr = 16000
        vocal_input, _ = librosa.load(audio_path, sr=sr)
        
        print("Pipeline 執行中... 這可能需要一些時間。")
        sample = pipeline(
            prompt, num_frames=video_length, negative_prompt=negative_prompt,
            width=width, height=height, guidance_scale=6.0,
            generator=torch.Generator().manual_seed(seed), num_inference_steps=num_inference_steps,
            video=input_video, mask_video=input_video_mask, clip_image=clip_image,
            text_guide_scale=3.0, audio_guide_scale=5.0, vocal_input_values=vocal_input,
            motion_frame=25, fps=fps, sr=sr, cond_file_path=image_path,
            overlap_window_length=10, seed=seed, overlapping_weight_scheme="uniform",
        ).videos
        
        print("正在儲存影片...")
        os.makedirs("outputs", exist_ok=True)
        video_path = os.path.join("outputs", f"{output_filename}.mp4")
        save_videos_grid(sample, video_path, fps=fps)
        
        output_video_with_audio = os.path.join("outputs", f"{output_filename}_audio.mp4")
        
        print("正在將音訊合併到影片中...")
        subprocess.run([
            "ffmpeg", "-y", "-loglevel", "quiet", "-i", video_path, "-i", audio_path,
            "-c:v", "copy", "-c:a", "aac", "-strict", "experimental",
            output_video_with_audio
        ], check=True)
        
        os.remove(video_path)
        
    print(f"✅ 生成完成!影片已儲存至: {output_video_with_audio}")
    return output_video_with_audio, seed

def main():
    parser = argparse.ArgumentParser(description="StableAvatar 命令列推理工具")
    parser.add_argument('--prompt', type=str, default="a beautiful woman is talking, masterpiece, best quality", help='正面提示詞')
    parser.add_argument('--input_image', type=str, default="example_case/case-6/reference.png", help='輸入圖片的路徑或 URL')
    parser.add_argument('--input_audio', type=str, default="example_case/case-6/audio.wav", help='輸入音訊的路徑或 URL')
    parser.add_argument('--seed', type=int, default=42, help='隨機種子,-1 表示隨機')
    parser.add_argument('--negative_prompt', type=str, default="vivid color, static, blur details, text, style, painting, picture, still, gray, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, malformed, deformed, bad anatomy, fused fingers, still image, messy background, many people in the background, walking backwards", help='負面提示詞')
    parser.add_argument('--width', type=int, default=512, help='影片寬度')
    parser.add_argument('--height', type=int, default=512, help='影片高度')
    parser.add_argument('--num_inference_steps', type=int, default=50, help='推理步數')
    parser.add_argument('--fps', type=int, default=25, help='影片幀率')
    parser.add_argument('--gpu_memory_mode', type=str, default="model_cpu_offload", choices=["Normal", "model_cpu_offload"], help='GPU 記憶體優化模式')
    parser.add_argument('--model_version', type=str, default="square", choices=["square", "rec_vec"], help='StableAvatar 模型版本')
    args = parser.parse_args()

    print("--- 步驟 1: 正在檢查並下載模型 ---")
    repo_root = snapshot_download(
        repo_id="FrancisRing/StableAvatar",
        allow_patterns=["StableAvatar-1.3B/*", "Wan2.1-Fun-V1.1-1.3B-InP/*", "wav2vec2-base-960h/*", "example_case/**", "deepspeed_config/**"],
    )
    print("模型檔案已準備就緒。")

    print("\n--- 步驟 2: 正在處理輸入檔案 ---")
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    temp_dir = f"temp_{timestamp}"
    os.makedirs(temp_dir, exist_ok=True)
    
    # <<< FIX 2: 穩健的路徑處理 >>>
    # 處理圖片路徑
    input_image_path = args.input_image
    # 如果不是 URL 且不是絕對路徑,就視為相對於 repo_root 的路徑
    if not input_image_path.startswith(('http', '/')):
        input_image_path = os.path.join(repo_root, input_image_path)
    
    local_image_path = os.path.join(temp_dir, os.path.basename(input_image_path))
    final_image_path = download_file(input_image_path, local_image_path)
    if not final_image_path:
        shutil.rmtree(temp_dir); return

    # 處理音訊路徑
    input_audio_path = args.input_audio
    if not input_audio_path.startswith(('http', '/')):
        input_audio_path = os.path.join(repo_root, input_audio_path)
        
    local_audio_path = os.path.join(temp_dir, os.path.basename(input_audio_path))
    final_audio_path = download_file(input_audio_path, local_audio_path)
    if not final_audio_path:
        shutil.rmtree(temp_dir); return
    # <<< END OF FIX 2 >>>

    print("\n--- 步驟 3: 正在載入模型 ---")
    pipeline, transformer3d, vae = setup_models(repo_root, args.model_version)
    print("模型載入完成。")
    
    print("\n--- 步驟 4: 開始執行推理 ---")
    run_inference(
        pipeline=pipeline, transformer3d=transformer3d, vae=vae,
        image_path=final_image_path, audio_path=final_audio_path,
        prompt=args.prompt, negative_prompt=args.negative_prompt,
        seed=args.seed, output_filename=f"output_{timestamp}",
        gpu_memory_mode=args.gpu_memory_mode, width=args.width,
        height=args.height, num_inference_steps=args.num_inference_steps,
        fps=args.fps
    )
    
    print("\n--- 步驟 5: 清理暫存檔案 ---")
    try:
        shutil.rmtree(temp_dir)
        print("暫存檔案已刪除。")
    except OSError as e:
        print(f"錯誤:無法刪除暫存目錄 {temp_dir}: {e}")

if __name__ == "__main__":
    main()