Spaces:
Runtime error
Runtime error
| import inspect | |
| import math | |
| import random | |
| from dataclasses import dataclass | |
| from functools import partial | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| from tqdm import tqdm | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms.functional as TF | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models.embeddings import get_1d_rotary_pos_embed | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import BaseOutput, logging, replace_example_docstring | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.video_processor import VideoProcessor | |
| from einops import rearrange | |
| from PIL import Image | |
| from transformers import AutoTokenizer | |
| from transformers import Wav2Vec2Model, Wav2Vec2Processor | |
| from wan.models.vocal_projector_fantasy import split_audio_sequence, split_tensor_with_padding | |
| from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel | |
| from wan.models.wan_image_encoder import CLIPModel | |
| from wan.models.wan_text_encoder import WanT5EncoderModel | |
| from wan.models.wan_vae import AutoencoderKLWan | |
| from wan.utils.color_correction import match_and_blend_colors | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```python | |
| pass | |
| ``` | |
| """ | |
| def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0): | |
| for name, module in model.named_children(): | |
| for source_module, target_module in module_map.items(): | |
| if isinstance(module, source_module): | |
| num_param = sum(p.numel() for p in module.parameters()) | |
| if max_num_param is not None and total_num_param + num_param > max_num_param: | |
| module_config_ = overflow_module_config | |
| else: | |
| module_config_ = module_config | |
| module_ = target_module(module, **module_config_) | |
| setattr(model, name, module_) | |
| total_num_param += num_param | |
| break | |
| else: | |
| total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param) | |
| return total_num_param | |
| def enable_vram_management(model, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None): | |
| enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0) | |
| model.vram_management_enabled = True | |
| def timestep_transform( | |
| t, | |
| shift=5.0, | |
| num_timesteps=1000, | |
| ): | |
| t = t / num_timesteps | |
| # shift the timestep based on ratio | |
| new_t = shift * t / (1 + (shift - 1) * t) | |
| new_t = new_t * num_timesteps | |
| return new_t | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| def resize_mask(mask, latent, process_first_frame_only=True): | |
| latent_size = latent.size() | |
| batch_size, channels, num_frames, height, width = mask.shape | |
| if process_first_frame_only: | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = 1 | |
| first_frame_resized = F.interpolate( | |
| mask[:, :, 0:1, :, :], | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = target_size[0] - 1 | |
| if target_size[0] != 0: | |
| remaining_frames_resized = F.interpolate( | |
| mask[:, :, 1:, :, :], | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) | |
| else: | |
| resized_mask = first_frame_resized | |
| else: | |
| target_size = list(latent_size[2:]) | |
| resized_mask = F.interpolate( | |
| mask, | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| return resized_mask | |
| class WanI2VPipelineTalkingInferenceLongOutput(BaseOutput): | |
| r""" | |
| Output class for CogVideo pipelines. | |
| Args: | |
| video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
| List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
| denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
| `(batch_size, num_frames, channels, height, width)`. | |
| """ | |
| videos: torch.Tensor | |
| class WanI2VTalkingInferenceLongPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-video generation using Wan. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| """ | |
| _optional_components = [] | |
| model_cpu_offload_seq = "text_encoder->clip_image_encoder->transformer->vae" | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| def __init__( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| text_encoder: WanT5EncoderModel, | |
| vae: AutoencoderKLWan, | |
| transformer: WanTransformer3DFantasyModel, | |
| clip_image_encoder: CLIPModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| wav2vec_processor: Wav2Vec2Processor, | |
| wav2vec: Wav2Vec2Model, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| clip_image_encoder=clip_image_encoder, | |
| scheduler=scheduler, | |
| wav2vec_processor=wav2vec_processor, | |
| wav2vec=wav2vec, | |
| ) | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae.config.spacial_compression_ratio) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae.config.spacial_compression_ratio) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae.spacial_compression_ratio, do_normalize=False, do_binarize=True, | |
| do_convert_grayscale=True | |
| ) | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_videos_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_attention_mask = text_inputs.attention_mask | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| seq_lens = prompt_attention_mask.gt(0).sum(dim=1).long() | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask.to(device))[0] | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| _, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
| return [u[:v] for u, v in zip(prompt_embeds, seq_lens)] | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| do_classifier_free_guidance: bool = True, | |
| num_videos_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| Whether to use classifier free guidance or not. | |
| num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
| Number of videos that should be generated per prompt. torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| device: (`torch.device`, *optional*): | |
| torch device | |
| dtype: (`torch.dtype`, *optional*): | |
| torch dtype | |
| """ | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| negative_prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=negative_prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| return prompt_embeds, negative_prompt_embeds | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
| ): | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| (num_frames - 1) // self.vae.config.temporal_compression_ratio + 1, | |
| height // self.vae.config.spacial_compression_ratio, | |
| width // self.vae.config.spacial_compression_ratio, | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| if hasattr(self.scheduler, "init_noise_sigma"): | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_mask_latents( | |
| self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, | |
| noise_aug_strength | |
| ): | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| if mask is not None: | |
| mask = mask.to(device=device, dtype=self.vae.dtype) | |
| bs = 1 | |
| new_mask = [] | |
| for i in range(0, mask.shape[0], bs): | |
| mask_bs = mask[i: i + bs] | |
| mask_bs = self.vae.encode(mask_bs)[0] | |
| mask_bs = mask_bs.mode() | |
| new_mask.append(mask_bs) | |
| mask = torch.cat(new_mask, dim=0) | |
| # mask = mask * self.vae.config.scaling_factor | |
| if masked_image is not None: | |
| masked_image = masked_image.to(device=device, dtype=self.vae.dtype) | |
| bs = 1 | |
| new_mask_pixel_values = [] | |
| for i in range(0, masked_image.shape[0], bs): | |
| mask_pixel_values_bs = masked_image[i: i + bs] | |
| mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] | |
| mask_pixel_values_bs = mask_pixel_values_bs.mode() | |
| new_mask_pixel_values.append(mask_pixel_values_bs) | |
| masked_image_latents = torch.cat(new_mask_pixel_values, dim=0) | |
| # masked_image_latents = masked_image_latents * self.vae.config.scaling_factor | |
| else: | |
| masked_image_latents = None | |
| return mask, masked_image_latents | |
| def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
| frames = self.vae.decode(latents.to(self.vae.dtype)).sample | |
| frames = frames.cpu() | |
| frames = (frames / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| frames = frames.float().numpy() | |
| return frames | |
| def decode_latents_audio_video(self, latents: torch.Tensor) -> torch.Tensor: | |
| frames = self.vae.decode(latents.to(self.vae.dtype)).sample | |
| # frames = (frames / 2 + 0.5).clamp(0, 1) | |
| frames = frames.cpu().float() | |
| return frames | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def infer_add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.FloatTensor: | |
| """ | |
| compatible with diffusers add_noise() | |
| """ | |
| timesteps = timesteps.float() / self.num_timesteps | |
| timesteps = timesteps.view(timesteps.shape + (1,) * (len(noise.shape)-1)) | |
| return (1 - timesteps) * original_samples + timesteps * noise | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| # @property | |
| # def num_timesteps(self): | |
| # return self._num_timesteps | |
| def attention_kwargs(self): | |
| return self._attention_kwargs | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 480, | |
| width: int = 720, | |
| video: Union[torch.FloatTensor] = None, | |
| mask_video: Union[torch.FloatTensor] = None, | |
| num_frames: int = 81, | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 6, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "numpy", | |
| return_dict: bool = False, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| clip_image: Image = None, | |
| max_sequence_length: int = 512, | |
| text_guide_scale=None, | |
| audio_guide_scale=None, | |
| vocal_input_values=None, | |
| motion_frame=None, | |
| fps=None, | |
| sr=None, | |
| cond_file_path=None, | |
| seed=None, | |
| overlap_window_length=None, | |
| overlapping_weight_scheme="uniform", | |
| ) -> Union[WanI2VPipelineTalkingInferenceLongOutput, Tuple]: | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| Examples: | |
| Returns: | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| num_videos_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| # 2. Default call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| weight_dtype = self.text_encoder.dtype | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| negative_prompt, | |
| do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| # prompt_embeds = negative_prompt_embeds + prompt_embeds + prompt_embeds | |
| prompt_embeds = negative_prompt_embeds + negative_prompt_embeds + prompt_embeds | |
| clip_length = 81 | |
| audio_token_per_frame = int(sr / fps) | |
| max_audio_index = vocal_input_values.shape[0] | |
| total_frames = int(max_audio_index / audio_token_per_frame) | |
| frames_per_batch = 21 | |
| if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, mu=1) | |
| else: | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| latent_channels = self.vae.config.latent_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| total_frames, | |
| height, | |
| width, | |
| weight_dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| infer_length = latents.size()[2] | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| latents_all = latents.clone() | |
| clip_image = cond_image = Image.open(cond_file_path).convert('RGB') | |
| cond_image = cond_image.resize([width, height]) | |
| clip_image = clip_image.resize([width, height]) | |
| clip_image = torch.from_numpy(np.array(clip_image)).permute(2, 0, 1) | |
| clip_image = clip_image / 255 | |
| clip_image = (clip_image - 0.5) * 2 # C H W | |
| cond_image = torch.from_numpy(np.array(cond_image)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) | |
| cond_image = cond_image / 255 | |
| cond_image = (cond_image - 0.5) * 2 # normalization | |
| cond_image = cond_image.to(device) # 1 C 1 H W | |
| clip_image = clip_image.to(device, weight_dtype) | |
| clip_context = self.clip_image_encoder([clip_image[:, None, :, :]]) | |
| clip_context = (torch.cat([clip_context, clip_context, clip_context], dim=0) if do_classifier_free_guidance else clip_context) | |
| video_frames = torch.zeros(1, cond_image.shape[1], clip_length - cond_image.shape[2], height, width).to(device) | |
| padding_frames_pixels_values = torch.concat([cond_image, video_frames], dim=2).to(dtype=torch.float32) | |
| _, masked_video_latents = self.prepare_mask_latents( | |
| None, | |
| padding_frames_pixels_values, | |
| batch_size, | |
| height, | |
| width, | |
| weight_dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| noise_aug_strength=None, | |
| ) # [1, 16, 21, 64, 64] | |
| msk = torch.ones(1, clip_length, masked_video_latents.size()[-2], masked_video_latents.size()[-1], device=device) | |
| msk[:, 1:] = 0 | |
| msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, masked_video_latents.size()[-2], masked_video_latents.size()[-1]) | |
| msk = msk.transpose(1, 2).to(dtype=torch.float32) | |
| mask_input = torch.cat([msk] * 3) if do_classifier_free_guidance else msk | |
| masked_video_latents_input = (torch.cat([masked_video_latents] * 3) if do_classifier_free_guidance else masked_video_latents) | |
| y = torch.cat([mask_input.to(device), masked_video_latents_input.to(device)], dim=1).to(device, weight_dtype) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| pred_latents = torch.zeros_like(latents_all, dtype=latents_all.dtype, ) | |
| arrive_last_frame = False | |
| index_start = 0 | |
| overlap_window_length = overlap_window_length # [5, 7, 10] longer length --> higher quality | |
| index_end = index_start + frames_per_batch | |
| index_previous_end = index_end | |
| while index_end <= infer_length: | |
| self.scheduler._step_index = None | |
| idx_list = [ii % latents_all.shape[2] for ii in range(index_start, index_end)] | |
| if index_end == infer_length: | |
| idx_list_audio = [ii % max_audio_index for ii in range(index_start * 4 * audio_token_per_frame, max_audio_index)] | |
| else: | |
| idx_list_audio = [ii % max_audio_index for ii in range(index_start * 4 * audio_token_per_frame, index_start * 4 * audio_token_per_frame + clip_length * audio_token_per_frame)] | |
| # idx_list_audio = [ii % max_audio_index for ii in range(index_start * 4 * audio_token_per_frame, index_end * 4 * audio_token_per_frame)] | |
| latents = latents_all[:, :, idx_list].clone() | |
| sub_vocal_input_values = vocal_input_values[idx_list_audio] | |
| sub_vocal_input_values = self.wav2vec_processor(sub_vocal_input_values, sampling_rate=sr, return_tensors="pt").input_values.to(device) | |
| sub_vocal_embeddings = self.wav2vec(sub_vocal_input_values).last_hidden_state | |
| latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents | |
| if hasattr(self.scheduler, "scale_model_input"): | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| target_shape = (self.vae.config.latent_channels, (num_frames - 1) // self.vae.config.temporal_compression_ratio + 1, width // self.vae.config.spacial_compression_ratio, height // self.vae.config.spacial_compression_ratio) | |
| seq_len = math.ceil((target_shape[2] * target_shape[3]) / (self.transformer.config.patch_size[1] * self.transformer.config.patch_size[2]) * target_shape[1]) | |
| if text_guide_scale is not None and audio_guide_scale is not None: | |
| sub_vocal_embeddings = torch.cat([torch.zeros_like(sub_vocal_embeddings), sub_vocal_embeddings, sub_vocal_embeddings], dim=0) | |
| with torch.amp.autocast('cuda', dtype=weight_dtype): | |
| legal_compressed_frames_num = latents.size()[2] | |
| noise_pred = self.transformer( | |
| x=latent_model_input, | |
| context=prompt_embeds, | |
| t=timestep, | |
| seq_len=seq_len, | |
| y=y[:, :, :legal_compressed_frames_num], | |
| clip_fea=clip_context, | |
| vocal_embeddings=sub_vocal_embeddings, | |
| is_clip_level_modeling=False, | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_drop_audio, noise_pred_cond = noise_pred.chunk(3) | |
| noise_pred = noise_pred_uncond + audio_guide_scale * (noise_pred_drop_audio - noise_pred_uncond) + text_guide_scale * (noise_pred_cond - noise_pred_drop_audio) | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| torch.cuda.empty_cache() | |
| if index_start != 0 and i != 0: | |
| overlap_window_weight = torch.zeros(1, 1, overlap_window_length, 1, 1).to(device=latents.device, dtype=latents.dtype) | |
| if overlapping_weight_scheme == "uniform": | |
| for j in range(overlap_window_length): | |
| overlap_window_weight[:, :, j] = j / (overlap_window_length-1) | |
| elif overlapping_weight_scheme == "log": | |
| init_weight = torch.linspace(0, 1, overlap_window_length) | |
| init_weight = torch.log1p(init_weight * (torch.exp(torch.tensor(1.0)) - 1)) | |
| norm_weights = (init_weight - init_weight.min()) / (init_weight.max() - init_weight.min()) | |
| for j in range(overlap_window_length): | |
| overlap_window_weight[:, :, j] = norm_weights[j] | |
| overlap_idx_list_start = [ii % latents.shape[2] for ii in range(0, overlap_window_length)] | |
| overlap_idx_list_end = [ii % latents_all.shape[2] for ii in range(index_previous_end-overlap_window_length, index_previous_end)] | |
| latents[:, :, overlap_idx_list_start] = latents[:, :, overlap_idx_list_start] * overlap_window_weight + pred_latents[:, :, overlap_idx_list_end] * (1-overlap_window_weight) | |
| latents = latents.to(torch.bfloat16) | |
| for iii in range(legal_compressed_frames_num): | |
| p = (index_start + iii) % pred_latents.shape[2] | |
| pred_latents[:, :, p] = latents[:, :, iii] | |
| else: | |
| latents = latents.to(torch.bfloat16) | |
| for iii in range(legal_compressed_frames_num): | |
| p = (index_start + iii) % pred_latents.shape[2] | |
| pred_latents[:, :, p] = latents[:, :, iii] | |
| if arrive_last_frame: | |
| break | |
| if index_end != infer_length: | |
| index_previous_end = index_end | |
| index_start = index_start + (frames_per_batch-overlap_window_length) | |
| if (index_start + frames_per_batch) < infer_length: | |
| index_end = index_start + frames_per_batch | |
| else: | |
| index_end = infer_length | |
| arrive_last_frame = True | |
| latents_all = pred_latents | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| latents = latents_all.float()[:, :, :infer_length] | |
| torch.cuda.empty_cache() | |
| if output_type == "numpy": | |
| video = self.decode_latents(latents) | |
| elif not output_type == "latent": | |
| video = self.decode_latents(latents) | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| video = torch.from_numpy(video) | |
| return WanI2VPipelineTalkingInferenceLongOutput(videos=video) | |